Как составлять электронные формулы химических элементов? Как определить электронную формулу


Как составить электронную формулу химического элемента в неорганической химии :: SYL.ru

Выясним, как составить электронную формулу химического элемента. Этот вопрос является важным и актуальным, так как дает представление не только о строении, но и о предполагаемых физических и химических свойствах рассматриваемого атома.

Правила составления

Для того чтобы составить графическую и электронную формулу химического элемента, необходимо иметь представление о теории строения атома. Начнем с того, что есть два основных компонента атома: ядро и отрицательные электроны. Ядро включает в себя нейтроны, которые не имеют заряда, а также протоны, обладающие положительным зарядом.

Рассуждая, как составить и определить электронную формулу химического элемента, отметим, что для нахождения числа протонов в ядре, потребуется периодическая система Менделеева.

Номер элемента по порядку соответствует количеству протонов, находящихся в его ядре. Номер периода, в котором располагается атом, характеризует число энергетических слоев, располагаются на которых электроны.

Для определения количества нейтронов, лишенных электрического заряда, необходимо из величины относительной массы атома элемента, отнять его порядковый номер (количество протонов).

Инструкция

Для того чтобы понять, как составить электронную формулу химического элемента, рассмотрим правило заполнения отрицательными частицами подуровней, сформулированное Клечковским.

В зависимости от того, каким запасом свободной энергии обладают свободные орбитали, составляется ряд, характеризующий последовательность заполнения уровней электронами.

Каждая орбиталь содержит всего два электрона, которые располагаются антипараллельными спинами.

Для того чтобы выразить структуру электронных оболочек, применяют графические формулы. Как выглядят электронные формулы атомов химических элементов? Как составлять графические варианты? Эти вопросы включены в школьный курс химии, поэтому остановимся на них подробнее.

Существует определенная матрица (основа), которую используют при составлении графических формул. Для s-орбитали характерна только одна квантовая ячейка, в которой противоположно друг другу располагается два электрона. Их в графическом виде обозначаются стрелками. Для р-орбитали изображают три ячейки, в каждой также находится по два электрона, на d орбитали располагается десять электронов, а f заполняется четырнадцатью электронами.

Примеры составления электронных формул

Продолжим разговор о том, как составить электронную формулу химического элемента. Например, нужно составить графическую и электронную формулу для элемента марганца. Сначала определим положение данного элемента в периодической системе. Он имеет 25 порядковый номер, следовательно, в атоме располагается 25 электронов. Марганец - это элемент четвертого периода, следовательно, у него четыре энергетических уровня.

Как составить электронную формулу химического элемента? Записываем знак элемента, а также его порядковый номер. Пользуясь правилом Клечковского, распределяем по энергетическим уровням и подуровням электроны. Последовательно располагаем их на первом, втором, а также третьем уровне, вписывая в каждую ячейку по два электрона.

Далее суммируем их, получая 20 штук. Три уровня в полном объеме заполнены электронами, а на четвертом остается только пять электронов. Учитывая, что для каждого вида орбитали характерен свой запас энергии, оставшиеся электроны распределяем на 4s и 3d подуровень. В итоге готовая электронно-графическая формула для атома марганца имеет следующий вид:

1s2 / 2s2, 2p6 / 3s2, 3p6 / 4s2, 3d3

Практическое значение

С помощью электронно-графических формул можно наглядно увидеть число свободных (неспаренных) электронов, определяющих валентность данного химического элемента.

Предлагаем обобщенный алгоритм действий, с помощью которого можно составить электронно-графические формулы любых атомов, располагающихся в таблице Менделеева.

В первую очередь необходимо определить количество электронов, используя периодическую систему. Цифра периода указывает на численность энергетических уровней.

Принадлежность к определенной группе связана с количеством электронов, находящихся на наружном энергетическом уровне. Подразделяют уровни на подуровни, заполняют их с учетом правила Клечковского.

Заключение

Для того чтобы определить валентные возможности любого химического элемента, расположенного в таблице Менделеева, необходимо составить электронно-графическую формулу его атома. Алгоритм, приведенный выше, позволит справиться с поставленной задачей, определить возможные химические и физические свойства атома.

www.syl.ru

Электронные формулы атомов химических элементов

Электронные формулы атомов химических элементов, слои расположены в порядке заполнения подуровней. Электронные слои атомов заполняются электронами в порядке, согласно правилу Клечковского.

Порядок заполнения атомных орбиталей по мере увеличения энергии следующий: 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f ≈ 5d < 6p < 7s < 5f ≈ 6d < 7p < 8s. При заполнении орбитальных оболочек атома более предпочтительны (более энергетически выгодны), и, значит, заполняются раньше те состояния, для которых сумма главного квантового числа n и побочного (орбитального) квантового числа l , т.е. n + l , имеет меньшее значение.

s-элементы d-элементы f-элементы p-элементы
Знак Элемент Электронная формула
I период
1 H водород 1s1
2 He гелий 1s2
Знак Элемент Электронная формула
II период
3 Li литий 1s2 2s1
4 Be бериллий 1s2 2s2
5 B бор 1s2 2s2 2p1
6 C углерод 1s2 2s2 2p2
7 N азот 1s2 2s2 2p3
8 O кислород 1s2 2s2 2p4
9 F фтор 1s2 2s2 2p5
10 Ne неон 1s2 2s2 2p6
Знак Элемент Электронная формула
III период
11 Na натрий 1s2 2s2 2p6 3s1
12 Mg магний 1s2 2s2 2p6 3s2
13 Al алюминий 1s2 2s2 2p6 3s2 3p1
14 Si кремний 1s2 2s2 2p6 3s2 3p2
15 P фосфор 1s2 2s2 2p6 3s2 3p3
16 S сера 1s2 2s2 2p6 3s2 3p4
17 Cl хлор 1s2 2s2 2p6 3s2 3p5
18 Ar аргон 1s2 2s2 2p6 3s2 3p6
Знак Элемент Электронная формула
IV период
19 K калий 1s2 2s2 2p6 3s2 3p6 4s1
20 Ca кальций 1s2 2s2 2p6 3s2 3p6 4s2
21 Sc скандий 1s2 2s2 2p6 3s2 3p6 4s2 3d1
22 Ti титан 1s2 2s2 2p6 3s2 3p6 4s2 3d2
23 V ванадий 1s2 2s2 2p6 3s2 3p6 4s2 3d3
24 Cr хром 1s2 2s2 2p6 3s2 3p6 4s1 3d5
25 Mn марганец 1s2 2s2 2p6 3s2 3p6 4s2 3d5
26 Fe железо 1s2 2s2 2p6 3s2 3p6 4s2 3d6
27 Co кобальт 1s2 2s2 2p6 3s2 3p6 4s2 3d7
28 Ni никель 1s2 2s2 2p6 3s2 3p6 4s2 3d8
29 Cu медь 1s2 2s2 2p6 3s2 3p6 4s1 3d10
30 Zn цинк 1s2 2s2 2p6 3s2 3p6 4s2 3d10
31 Ga галлий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p1
32 Ge германий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2
33 As мышьяк 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p3
34 Se селен 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p4
35 Br бром 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5
36 Kr криптон 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6
Знак Элемент Электронная формула
V период
37 Rb рубидий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1
38 Sr стронций 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2
39 Y иттрий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d1
40 Zr цирконий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d2
41 Nb ниобий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d4
42 Mo молибден 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d5
43 Tc технеций 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d5
44 Ru рутений 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d7
45 Rh родий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d8
46 Pd палладий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s0 4d10
47 Ag серебро 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d10
48 Cd кадмий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10
49 In индий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p1
50 Sn олово 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p2
51 Sb сурьма 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s22 4d10 5p3
52 Te теллур 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p4
53 I йод 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p5
54 Xe ксенон 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6
Знак Элемент Электронная формула
VI период
55 Cs цезий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s1
56 Ba барий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2
57 La лантан 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 5d1
58 Ce церий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f2
59 Pr празеодим 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f3
60 Nd неодим 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f4
61 Pm прометий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f5
62 Sm самарий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f6
63 Eu европий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f7
64 Gd гадолиний 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f7 5d1
65 Tb тербий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f9
66 Dy диспрозий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f10
67 Ho гольмий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f11
68 Er эрбий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f12
68 Tm тулий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f13
70 Yb иттербий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14
71 Lu лютеций 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d1
72 Hf гафний 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d2
73 Ta тантал 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d3
74 W вольфрам 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d4
75 Re рений 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d5
76 Os осмий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d6
77 Ir иридий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d7
78 Pt платина 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s1 4f14 5d9
79 Au золото 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s1 4f14 5d10
80 Hg ртуть 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10
81 Tl таллий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p1
82 Pb свинец 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p2
83 Bi висмут 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p3
84 Po полоний 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p4
85 At астат 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p5
86 Rn радон 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d10 5p6 6s2 4f14 5d10 6p6
Знак Элемент Электронная формула
VII период
87 Fr франций 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s1
88 Ra радий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2
89 Ac актиний 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 6d1
90 Th торий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 6d2 5f0
91 Pa протактиний 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f2 6d1
92 U уран 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f3 6d1
93 Np нептуний 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f4 6d1
94 Pu плутоний 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f5 6d1
95 Am америций 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f7
96 Cm кюрий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f7 6d1
97 Bk берклий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f8 6d1
98 Cf калифорний 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f10
99 Es эйнштейний 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f11
100 Fm фермий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f12
101 Md менделеевий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f13
102 No нобелий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14
103 Lr лоуренсий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d1
104 Rf резерфордий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d2
105 Db дубний 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d3
106 Sg сиборгий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d4
107 Bh борий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d5
108 Hs хассий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d6
109 Mt мейтнерий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d7
110 Ds дармштадтий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d8
111 Rg рентгений 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d9
112 Cn коперниций 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10
113 Nh нихоний 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p1
114 Fl флеровий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p2
115 московий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p3
116 Lv ливерморий 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p4
117 Ts теннесcин 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p5
118 Og оганесон 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p6

Таблица Менделеева

Электронные конфигурации элементов со 105 по 118

Электронные конфигурации элементов со 105 по 118 приведены согласно данных сайта WebElements

  • 105 Db : [Rn].5f14.6d3.7s2 (догадка, основанная на электронной конфигурации тантала) ; 2.8.18.32.32.11.2
  • 106 Sg : [Rn].5f14.6d4.7s2 (догадка, основанная на электронной конфигурации вольфрама) ; 2.8.18.32.32.12.2
  • 107 Bh : [Rn].5f14.6d5.7s2 (догадка, основанная на электронной конфигурации рения) ; 2.8.18.32.32.13.2
  • 108 Hs : [Rn].5f14.6d6.7s2 (догадка, основанная на электронной конфигурации осмия) ; 2.8.18.32.32.14.2
  • 109 Mt : [Rn].5f14.6d7.7s2 (догадка, основанная на электронной конфигурации иридия) ; 2.8.18.32.32.15.2
  • 110 Ds : [Rn].5f14.6d9.7s1 (догадка, основанная на электронной конфигурации платины) ; 2.8.18.32.32.17.1
  • 111 Rg : [Rn].5f14.6d10.7s1 (догадка, основанная на электронной конфигурации золота) ; 2.8.18.32.32.18.1
  • 112 Cn : [Rn].5f14.6d10.7s2 (догадка, основанная на электронной конфигурации ртути) ; 2.8.18.32.32.18.2
  • 113 Uut : [Rn].5f14.6d10.7s2.7p1 (догадка, основанная на электронной конфигурации таллия) ; 2.8.18.32.32.18.3
  • 114 Fl : [Rn].5f14.6d10.7s2.7p2 (догадка, основанная на электронной конфигурации свинца) ; 2.8.18.32.32.18.4
  • 115 Uup : [Rn].5f14.6d10.7s2.7p3 (догадка, основанная на электронной конфигурации висмута) ; 2.8.18.32.32.18.5
  • 116 Lv : [Rn].5f14.6d10.7s2.7p4 (догадка, основанная на электронной конфигурации полония) ; 2.8.18.32.32.18.6
  • 117 Uus : [Rn].5f14.6d10.7s2.7p5 (догадка, основанная на электронной конфигурации астата) ; 2.8.18.32.32.18.7
  • 118 Uuo : [Rn].5f14.6d10.7s2.7p6 (догадка, основанная на электронной конфигурации радона) ; 2.8.18.32.32.18.8

 Электронные атомные и молекулярные орбитали

Эмпирическое правило Клечковского

Эмпирическое правило Клечковского и вытекающее из него схема очерёдностей несколько противоречат реальной энергетической последовательности атомных орбиталей только в двух однотипных случаях: у атомов Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Pt, Au имеет место «провал» электрона с s-подуровня внешнего слоя на d-подуровень предыдущего слоя, что приводит к энергетически более устойчивому состоянию атома, а именно: после заполнения двумя электронами орбитали 6s следующий электрон появляется на орбитали 5d, а не 4f, и только затем происходит заселение четырнадцатью электронами орбиталей 4f, затем продолжается и завершается заселение десятиэлектронного состояния 5d. Аналогичная ситуация характерна и для орбиталей 7s, 6d и 5f.

Источники:

  • Atomic, Molecular, & Optical Physics Handbook, Ed. Gordon W. F. Drake, American Institute of Physics, Woodbury, New York, USA, 1996.
  • R.L. DeKock and H.B. Gray in Chemical Structure and bonding, Benjamin/Cummings, Menlo Park, California, USA, 1980.
  • A.M. James and M.P. Lord in Macmillan’s Chemical and Physical Data, Macmillan, London, UK, 1992.
  • J.E. Huheey, E.A. Keiter, and R.L. Keiter in Inorganic Chemistry : Principles of Structure and Reactivity, 4th edition, HarperCollins, New York, USA, 1993.

www.sciencedebate2008.com

Как составлять электронные формулы химических элементов?

Как составлять электронные формулы химических элементов?

  • Задача составления электронной формулы химического элемента не самая простая.

    Научившись раз, дальше вы легко будете справляться с составлением формулы всех химических элементов.

    Итак, алгоритм составления электронных формул элементов такой:

    • Сначала записываем знак хим. элемента, где внизу слева от знака указываем его порядковый номер.
    • Далее по номеру периода (из которого элемент) определяем число энергетических уровней и рисуем рядом со знаком хим-го элемента такое количество дуг.
    • Затем по номеру группы число электронов на внешнем уровне, записываем под дугой.
    • На 1 - ом уровне максимально возможно 2е, на втором уже 8, на третьем - целых 18. Начинаем ставить числа под соответствующими дугами.
    • Число электронов на предпоследнем уровне нужно рассчитывать так: из порядкового номера элемента отнимается число уже проставленных электронов.
    • Остается превратить нашу схему в электронную формулу:

    Вот электронные формулы некоторых химических элементов:

    1. Пишем химический элемент и его порядковый номер.Номер показывает кол-во электронов в атоме.
    2. Составляем формулу. Для этого нужно узнать количество энергетических уровней, основой для определения берется номер периода элемента.
    3. Разбиваем уровни на под уровни.

    Ниже можно увидеть пример, как правильно составлять электронные формулы химических элементов.

  • Составить электронные формулы химических элементов нужно таким способом: нужно посмотреть номер элемента в таблице Менделеева, таким образом узнать сколько у него электронов. Затем нужно узнать количество уровней, который равен периоду. Затем пишутся подуровни и они заполняются:

  • -Первым делом вам надо определить число атомов согласно таблицы Менделеева.

    -Далее следует определить число энергетических уровней - основополагающим здесь будет являться номер периода, в котором размещн данный элемент.

    -Далее за эти вам необходимо приступить к разбитию уровней на подуровни, заполняемые электронами. При этом основываться стоит на принципе наименьшей энергии.

  • Для составления электронной формулы вам понадобится периодическая система Менделеева. Находите ваш химический элемент там и смотрите период - он будет равен числу энергетических уровней. Номер группы будет соответствовать численно количеству электронов на последнем уровне. Номер элемента будет количественно равен числу его электронов.Так же вам четко надо знать, что на первом уровне есть максимум 2 электрона, на втором - 8, на третьем - 18.

    Это основные моменты. Ко всему прочему в интернете (в том числе и нашем сайте) вы можете найти информацию с уже готовой электронной формулой для каждого элемента, так вы сможете проверить себя.

  • Составление электронных формул химических элементов очень даже сложный процесс, без специальных таблиц тут не обойтись, да и формул нужно применять целую кучу. Вкратце для составления нужно пройти по этим этапам:

    Нужно составить орбитальную диаграмму, в которой будет понятие отличия электронов друг от друга. В диаграмме выделяются орбитали и электроны.

    Электроны заполняются по уровням, снизу в верх и имеют несколько подуровней.

    Итак вначале узнам общее количество электронов заданного атома.

    Заполняем формулу по определнной схеме и записываем - это и будет электронной формулой.

    Например у Азота эта формула выглядит так, сначала разбираемся с электронами:

    И записываем формулу:

  • Чтобы понять принцип составления электронной формулы химического элемента, для начала нужно определить по номеру в таблице Менделеева общее количество электронов в атоме. После этого нужно определить число энергетических уровней, взяв за основу номер периода, в котором находится элемент.

    После этого уровни разбиваются на подуровни, которые заполняют электронами, основываясь на Принципе наименьшей энергии.

    Можно проверить правильность своих рассуждений, заглянув, например, сюда.

  • Составив электронную формулу химического элемента, можно узнать, сколько электронов и электронных слоев в конкретном атоме, а также порядок их распределения по слоям.

    Для начала определяем порядковый номер элемента по таблице Менделеева, он соответствует числу электронов. Количество электронных слоев указывает на номер периода, а количество число электронов на последнем слое атома соответствует номеру группы.

    • сначала заполняем s-подуровень, а потом р-, d- b f-подуровни;
    • по правилу Клечковского электроны заполняют орбитали в порядке возрастания энергии этих орбиталей;
    • по правилу Хунда электроны в пределах одного подуровня занимают свободные орбитали по одному, а потом образуют пары;
    • по принципу Паули на одной орбитали больше 2 электронов не бывает.
  • Электронная формула химического элемента показывает сколько электронных слоев и сколько электронов содержится в атоме и как они распределены по слоям.

    Чтобы составить электронную формулу химического элемента, нужно заглянуть в таблицу Менделеева и использовать полученные сведения для данного элемента. Порядковый номер элемента в таблице Менделеева соответствует количеству электронов в атоме. Число электронных слоев соответствует номеру периода, число электронов на последнем электронном слое соответствует номеру группы.

    Необходимо помнить, что на первом слое находится максимум 2 электрона 1s2, на втором - максимум 8 (два s и шесть р: 2s2 2p6), на третьем - максимум 18 ( два s, шесть p, и десять d: 3s2 3p6 3d10).

    Например, электронная формула углерода: С 1s2 2s2 2p2 (порядковый номер 6, номер периода 2, номер группы 4).

    Электронная формула натрия: Na 1s2 2s2 2p6 3s1 (порядковый номер 11, номер периода 3, номер группы 1).

    Для проверки правильности написания электронной формулы можно заглянуть на сайт www.alhimikov.net.

  • Составление электронной формулы хим.элементов на первый взгляд может показаться довольно сложным занятием, однако все станет понятно, если придерживаться следующей схемы:

    • сперва пишем орбитали
    • вставляем перед орбиталями числа, которые указывают номер энергетического уровня. Не забываем формулу для определения максимального количества электронов на энергетическом уровне: N=2n2

    А как узнать число энергетических уровней? Просто посмотрите таблицу Менделеева: это число равно номеру периода, в котором данный элемент находится.

    • над значком орбитали пишем число, которое обозначает количество электронов, которые находятся на этой орбитали.

    Например, электронная формула скандия будет выглядеть таким образом:

  • info-4all.ru

    Электронная и электронно-графическая формула в химии

    Что такое электронная и электронно-графическая формула

    Наиболее часто электронные формулы записывают для атомов в основном или возбужденном состоянии и для ионов.

    Существует несколько правил, которые необходимо учитывать при составлении электронной формулы атома химического элемента. Это принцип Паули, правила Клечковского или правило Хунда.

    Составление электронной и электронно-графической формулы

    При составление электронной формулы следует учитывать, что номер периода химического элемента определяет число энергетических уровней (оболочек) в атоме, а его порядковый номер количество электронов.

    Согласно правилу Клечковского, заполнение энергетических уровней происходит в порядке возрастания суммы главного и орбитального квантовых чисел (n + l), а при равных значениях этой суммы – в порядке возрастания n:

    1s < 2s < 2p < 3s < 3p < 4s ≈ 3d < 4p < 5s ≈ 4d < 5p < 6s ≈ 5d ≈ 4f < 6p и т.д.

    Так, значению n + l = 5 соответствуют энергетические подуровни 3d (n = 3, l=2), 4d (n=4, l=1) и 5s (n=5, l =0). Первым из этих подуровней заполняется тот, у которого ниже значение главного квантового числа.

    Поведение электронов в атомах подчиняется принципу запрета, сформулированному швейцарским ученым В. Паули: в атоме не может быть двух электронов, у которых были бы одинаковыми все четыре квантовых числа. Согласно принципу Паули, на одной орбитали, характеризуемой определенными значениями трех квантовых чисел (главное, орбитальное и магнитное), могут находиться только два электрона, отличающиеся значением спинового квантового числа. Из принципа Паули вытекает следствие: максимально возможное число электронов на каждом энергетическом уровне равно удвоенному значению квадрата главного квантового числа.

    Электронную формулу атома изображают следующим образом: каждому энергетическому уровню соответствует определенное главное квантовое число n, обозначаемое арабской цифрой; за каждой цифрой следует буква, соответствующая энергетическому подуровню и обозначающая орбитальное квантовое число. Верхний индекс у буквы показывает число электронов, находящихся в подуровне. Например, электронная формула атома натрия имеет следующий вид:

    11N 1s22s22p63s1.

    При заполнение электронами энергетических подуровней также необходимо соблюдать правило Хунда: в данном подуровне электроны стремятся занять энергетические состояния таким образом, чтобы суммарный спин был максимальным, что наиболее наглядно отражается при составлении электронно-графических формул.

    Электронно-графические формулы обычно изображают для валентных электронов. В такой формуле все электроны помечаются стрелочками, а ячейками (квадратиками) – орбитали. В одной ячейке не может находиться более двух электронов. Рассмотрим на примере ванадия. Сначала записываем электронную формулу и определяем валентные электроны:

    +74 W)2)8)18)32)12)2;

    1s22s22p63s23p63d104s24p64f145s25p65d46s2.

    Внешний энергетический уровень атома вольфрама содержит 6 электронов, которые являются валентными. Энергетическая диаграмма основного состояния принимает следующий вид:

    Энергетическая диаграмма основного состояния

    Примеры решения задач

    ru.solverbook.com

    Электронные формулы атомов химических элементов (109)

    № эл-та Химическийзнак Названиеэлемента Электронная формула
    1 H водород 1s 1
    2 He гелий 1s 2
    II период
    3 Li литий 1s 22s 1
    4 Be бериллий 1s 22s 2
    5 B бор 1s 22s 22p 1
    6 C углерод 1s 22s 22p 2
    7 N азот 1s 22s 22p 3
    8 O кислород 1s 22s 22p 4
    9 F фтор 1s 22s 22p 5
    10 Ne неон 1s 22s 22p 6
    III период
    11 Na натрий 1s 22s 22p 63s 1
    12 Mg магний 1s 22s 22p 63s 2
    13 Al алюминий 1s 22s 22p 63s 23p1
    14 Si кремний 1s 22s 22p 63s 23p2
    15 P фосфор 1s 22s 22p 63s 23p3
    16 S сера 1s 22s 22p 63s 23p4
    17 Cl хлор 1s 22s 22p 63s 23p5
    18 Ar аргон 1s 22s 22p 63s 23p6
    IV период
    19 K калий 1s 22s 22p 63s 23p64s 1
    20 Ca кальций 1s 22s 22p 63s 23p64s 2
    21 Sc скандий 1s 22s 22p 63s 23p64s 23d1
    22 Ti титан 1s 22s 22p 63s 23p64s 23d2
    23 V ванадий 1s 22s 22p 63s 23p64s 23d3
    24 Cr хром 1s 22s 22p 63s 23p64s 13d5
    25 Mn марганец 1s 22s 22p 63s 23p64s 23d5
    26 Fe железо 1s 22s 22p 63s 23p64s 23d6
    27 Co кобальт 1s 22s 22p 63s 23p64s 23d7
    28 Ni никель 1s 22s 22p 63s 23p64s 23d8
    29 Cu медь 1s 22s 22p 63s 23p64s 13d10
    30 Zn цинк 1s 22s 22p 63s 23p64s 23d10
    31 Ga галлий 1s 22s 22p 63s 23p64s 23d104p1
    32 Ge германий 1s 22s 22p 63s 23p64s 23d104p2
    33 As мышьяк 1s 22s 22p 63s 23p64s 23d104p3
    34 Se селен 1s 22s 22p 63s 23p64s 23d104p4
    35 Br бром 1s 22s 22p 63s 23p64s 23d104p5
    36 Kr криптон 1s 22s 22p 63s 23p64s 23d104p6
    V период
    37 Rb рубидий 1s 22s 22p 63s 23p64s 23d104p65s1
    38 Sr стронций 1s 22s 22p 63s 23p64s 23d104p65s2
    39 Y иттрий 1s 22s 22p 63s 23p64s 23d104p65s24d1
    40 Zr цирконий 1s 22s 22p 63s 23p64s 23d104p65s24d2
    41 Nb ниобий 1s 22s 22p 63s 23p64s 23d104p65s14d4
    42 Mo молибден 1s 22s 22p 63s 23p64s 23d104p65s14d5
    43 Tc технеций 1s 22s 22p 63s 23p64s 23d104p65s24d5
    44 Ru рутений 1s 22s 22p 63s 23p64s 23d104p65s14d7
    45 Rh родий 1s 22s 22p 63s 23p64s 23d104p65s14d8
    46 Pd палладий 1s 22s 22p 63s 23p64s 23d104p65s04d10
    47 Ag серебро 1s 22s 22p 63s 23p64s 23d104p65s14d10
    48 Cd кадмий 1s 22s 22p 63s 23p64s 23d104p65s24d10
    49 In индий 1s 22s 22p 63s 23p64s 23d104p65s24d105p1
    50 Sn олово 1s 22s 22p 63s 23p64s 23d104p65s24d105p2
    51 Sb сурьма 1s 22s 22p 63s 23p64s 23d104p65s224d105p3
    52 Te теллур 1s 22s 22p 63s 23p64s 23d104p65s24d105p4
    53 I йод 1s 22s 22p 63s 23p64s 23d104p65s24d105p5
    54 Xe ксенон 1s 22s 22p 63s 23p64s 23d104p65s24d105p6
    VI период
    55 Cs цезий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s1
    56 Ba барий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s2
    57 La лантан 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s25d1
    58 Ce церий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f2
    59 Pr празеодим 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f3
    60 Nd неодим 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f4
    61 Pm прометий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f5
    62 Sm самарий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f6
    63 Eu европий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f7
    64 Gd гадолиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f75d1
    65 Tb тербий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f9
    66 Dy диспрозий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f10
    67 Ho гольмий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f11
    68 Er эрбий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f12
    68 Tm тулий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f13
    70 Yb иттербий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f14
    71 Lu лютеций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d1
    72 Hf гафний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d2
    73 Ta тантал 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d3
    74 W вольфрам 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d4
    75 Re рений 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d5
    76 Os осмий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d6
    77 Ir иридий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d7
    78 Pt платина 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d9
    79 Au золото 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d10
    80 Hg ртуть 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d10
    81 Tl таллий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p1
    82 Pb свинец 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p2
    83 Bi висмут 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p3
    84 Po полоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p4
    85 At астат 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p5
    86 Rn радон 1s 22s 22p 63s 23p64s 23d104p65s14d105p66s24f145d106p6
    VII период
    87 Fr франций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s1
    88 Ra радий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s2
    89 Ac актиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d1
    90 Th торий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d25f0
    91 Pa протактиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f26d1
    92 U уран 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f36d1
    93 Np нептуний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f46d1
    94 Pu плутоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f56d1
    95 Am америций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f7
    96 Cm кюрий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f76d1
    97 Bk берклий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f86d1
    98 Cf калифорний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f10
    99 Es эйнштейний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f11
    100 Fm фермий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f12
    101 Md менделеевий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f13
    102 No нобелий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f14
    103 Lr лоуренсий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d1
    104 Rf резерфордий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d2
    105 Db дубний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d3
    106 Sg сиборгий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d4
    107 Bh борий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d5
    108 Hs хассий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d6
    109 Mt мейтнерий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d7
    Обозначения элементов:
    s-элементы p-элементы d-элементы f-элементы

    5-ege.ru

    Электронная формула химических элементов

    Что такое электронная формула

    Наиболее часто электронные формулы записывают для атомов в основном или возбужденном состоянии и для ионов.

    Существует несколько правил, которые необходимо учитывать при составлении электронной формулы атома химического элемента. Это принцип Паули, правила Клечковского или правило Хунда.

    При составление электронной формулы следует учитывать, что номер периода химического элемента определяет число энергетических уровней (оболочек) в атоме, а его порядковый номер количество электронов.

    Согласно правилу Клечковского, заполнение энергетических уровней происходит в порядке возрастания суммы главного и орбитального квантовых чисел (n + l), а при равных значениях этой суммы – в порядке возрастания n:

    1s < 2s < 2p < 3s < 3p < 4s ≈ 3d < 4p < 5s ≈ 4d < 5p < 6s ≈ 5d ≈ 4f < 6p и т.д.

    Так, значению n + l = 5 соответствуют энергетические подуровни 3d (n = 3, l=2), 4d (n=4, l=1) и 5s (n=5, l =0). Первым из этих подуровней заполняется тот, у которого ниже значение главного квантового числа.

    Поведение электронов в атомах подчиняется принципу запрета, сформулированному швейцарским ученым В. Паули: в атоме не может быть двух электронов, у которых были бы одинаковыми все четыре квантовых числа. Согласно принципу Паули, на одной орбитали, характеризуемой определенными значениями трех квантовых чисел (главное, орбитальное и магнитное), могут находиться только два электрона, отличающиеся значением спинового квантового числа. Из принципа Паули вытекает следствие: максимально возможное число электронов на каждом энергетическом уровне равно удвоенному значению квадрата главного квантового числа.

    Электронная формула атома

    Электронную формулу атома изображают следующим образом: каждому энергетическому уровню соответствует определенное главное квантовое число n, обозначаемое арабской цифрой; за каждой цифрой следует буква, соответствующая энергетическому подуровню и обозначающая орбитальное квантовое число. Верхний индекс у буквы показывает число электронов, находящихся в подуровне. Например, электронная формула атома натрия имеет следующий вид:

    11N 1s22s22p63s1.

    При заполнение электронами энергетических подуровней также необходимо соблюдать правило Хунда: в данном подуровне электроны стремятся занять энергетические состояния таким образом, чтобы суммарный спин был максимальным (это наиболее наглядно отражается при составлении электронно-графических формул).

    Примеры решения задач

    ru.solverbook.com

    Электронные формулы

    Условное изображение распределения электронов в электронном облаке по уровням, подуровням и орбиталям называется электронной формулой атома.

    Правила, на основе|основании| которых|каких| составляют|сдают| электронные формулы

    1. Принцип минимальной энергии: чем меньший запас энергии имеет система, тем более стойкой она является.

    2. Правило Клечковского: распределение электронов по уровням и подуровням электронного облака происходит в порядке возростания значения суммы главного и орбитального квантовых чисел ( n + 1 ). В случае равенства значений ( n + 1) первым заполняется тот подуровень, который имеет меньшее значение n .

    1 s 2 s p 3 s p d 4 s p d f 5 s p d f 6 s p d f 7 s p d f Номер уровня n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 Орбитальное 1* 0 0 1 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 квантовое число

    n+1| 1 2 3 3 4 5 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10

    Ряд Клечковского

    1* - смотри таблицу №2.

    3. Правило Хунда : при заполнении орбиталей одного подуровня низшему уровню энергии отвечает размещение электронов с параллельными спинами.

    или

    4. Принцип Паули : в атоме не могут быть даже двух электронов с одинаковым набором четырех квантовых чисел.

    1s1

    n 1 1

    l 0 0

    ml 0 0

    ms + -

    Составление|сдает| электронных формул

    Потенциальный ряд:1 s 2 s p 3 s p d 4 s p d f 5 s p d f 6 s p d f 7 s p d f

    ( n+1|) 1 2 3 3 4 5 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10

    Ряд Клечковского

    Порядок заполнения Електрони1s22s2p63s2p64s23d104p65s24d105p66s24f145d106p67s25f14..

    (n+l|) 1 2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8.

    Электронная формула 1s22s2p63s2p6d104s2p6d10f145s2p6d10f146s2p6d10f147s2p6d10f148...

    ( n+1|) 1 2 3 3 4 5 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10

    Информативность электронных формул

    1. Положение элемента в периодической|периодичной| системе.

    2. Возможны степени| окисления элемента.

    3. Химический характер элемента.

    4. Состав|склад| и свойства соединений элемента.

    1. Положение элемента в периодической|периодичной| системе Д.И.Менделеева :

    а) номер периода, в котором находится элемент, отвечает числу уровней, на которых располагаются электроны;

    б) номер группы, к которой принадлежит данный элемент, равняется сумме валентных электронов. Валентные электроны для атомов s- и р- элементов – это электроны внешнего уровня; для d – элементов - это электроны внешнего уровня и незаполненного подуровня предыдущего уровня.

    в) электронное семейство определяется по символу подуровня, на который поступает последний электрон (s-, p-, d-, f- ).

    г) подгруппа определяется по принадлежности к электронному семейству: s - и р – элементы занимают главные подгруппы, а d – элементы - побочные, f – элементы занимают отдельные разделы в нижней части периодической системы ( актиноиды и лантаноиды ).

    2. Возможные степени| окисления элементов.

    Степень окисления – это заряд, который приобретает атом, если отдает или присоединяет электроны.

    Атомы, которые отдают электроны, приобретают положительный заряд, который равняется числу отданных электронов ( заряд электрона (-1)

    Z Е0 – ne ZE+n

    Атом, который отдал электроны превращается в катион (положительный заряженный ион). Процесс отрыва электрона от атома называется процессом ионизации. Энергия, необходимая на осуществление этого процесса называется энергией ионизации (Эион, еВ).

    Первыми отделяются от атома электроны внешнего уровня, которые на орбитали не имеют пары, - розпарованные. При наличии свободных орбиталей в пределах одного уровня под действием внешней энергии электроны, которые образовывали на данном уровне пары, розпаровываються, а затем отделяются все вместе. Процесс розпаровывания, который происходит в результате поглощения одним из электронов пары порции энергии и переходом его на высший подуровень, называется процессом возбуждения.

    Наибольшее количество электронов, которые может отдать атом, равняется числу валентных электронов и отвечает номеру группы, в которой расположен элемент. Заряд, который приобретает атом после потери всех валентных электронов, называется высшей степенью окисления атома.

    После освобождения|увольнения| валентного уровня внешним становится|стает| уровень, который|какой| предшествовал валентному. Это полностью заполненный электронами уровень, и потому|и поэтому| энергетически стойкий.

    Атомы элементов, которые имеют на внешнем уровне от 4 до 7 электронов, достигают энергетически стойкого состояния не только путем отдачи электронов, но и путем их присоединения. Вследствие этого образуется уровень ( .ns2p6 ) – стойкое инертногазовое состояние.

    Атом, который присоединил электроны, приобретает отрицательную степень окисления – отрицательный заряд, который равняется числу принятых электронов.

    Z Е0 + ne ZE-n

    Число электронов, которые может присоединить атом, равняется числу ( 8 –N|), где N – это номер группы, в которой|какой| расположен элемент ( или число валентных электронов).

    Процесс присоединения электронов к атому сопровождается выделением энергии, которая называется сродством к электрону (Эсродства, еВ).

    studfiles.net