Перевод обыкновенных дробей в десятичные дроби: не так уж и сложно. Как перевести десятичную дробь в двоичную дробь


Двоичное счисление: вычитание, сложение, умножение, деление

Двоичное счисление

Двоичное счисление это

Двоичное счисление имеет в своей основе только две цифры: 0 и 1. Все числа записывают с помощью этих двух цифр. Основание двоичной системы счисления равно двум.

Двоичная система счисления применяется в компьютерной технике. Бит — это наименьшая единица информации. Слово «бит», по-английски bit, происходит от «binary digit», что значит «двоичная цифра». Бит может быть единицей или нулём, ведь в двоичной системе счисления имеются только две цифры: 0 и 1.

Двоичное счисление относится к позиционным системам счисления. Это значит, что значение двоичного числа связано с позициями цифр в нём. Пример: двоичные числа 1101 и 1011 составлены из одинакового количества единиц и нулей, но позиции их различны, значит и числа различны.

Вот таблица позиций числа 1101:

цифра1101
позиция3210

Теперь таблица позиций числа 1011:

цифра1011
позиция3210

Номера позиций начинаются с нуля.

Двоичные дроби

Дроби в двоичной системе счисления записывают как и в десятичной:1101,1101

Таблица позиций числа 1101,1101

цифра1101.1101
позиция3210 -1-2-3-4

Позиции дробной части начинаются с -1.

Перевод дробного двоичного числа в десятичное

Переведём двоичное дробное число 1101,1101 в десятичную дробь.Таблица позиций числа 1101,1101

цифра1101.1101
позиция3210 -1-2-3-4

1 * 23 + 1 * 22 + 0 * 21 + 1 * 20 + 1 * 2-1 + 1 * 2-2 + 0 * 2-3 + 1 * 2-4 = 8 + 4 + 0 + 1 + 0.5 + 0.25 + 0 + 0.0625 = 13.8125

Степени 2 равны номеру позиции.

Итак, двоичное число 1101,1101 равно 13,8125 в десятичной системе счисления.

Двоичная система счисления: как сравнить два числа?

Двоичные числа сравнивают также, как и в десятичной системе счисления, примеры:

100 > 10100 < 110111 < 1111111 < 1000

www.sbp-program.ru

Как перевести дробное десятичное число в двоичное. С плавающей запятой.

Перевод из десятичной в произвольную позиционную систему счисления Целая часть 1. Последовательно делить целую часть десятичного числа на основание, пока десятичное число не станет равно нулю. 2. Полученные при делении остатки являются цифрами нужного числа. Число в новой системе записывают, начиная с последнего остатка. Дробная часть 1. Дробную часть десятичного числа умножаем на основание системы, в которую требуется перевести. Отделяем целую часть. Продолжаем умножать дробную часть на основание новой системы, пока она не станет равной 0. 2. Число в новой системе записывают, начиная с последнего остатка, как при целой части. Пример 44(10) переведём в двоичную систему 44 делим на 2. частное 22, остаток 0 22 делим на 2. частное 11, остаток 0 11 делим на 2. частное 5, остаток 1 5 делим на 2. частное 2, остаток 1 2 делим на 2. частное 1, остаток 0 1 делим на 2. частное 0, остаток 1 Частное равно нулю, деление закончено. Теперь записав все остатки снизу вверх получим число 101100(2) Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в нуль и начать умножение получившегося числа на основание той системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в нуль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль. Ниже приводится пример перевода числа 103,625(10) в двоичную систему счисления. Переводим целую часть по правилам, описанным выше, получаем 103(10) = 1100111(2). 0,625 умножаем на 2. Дробная часть 0,250. Целая часть 1. 0,250 умножаем на 2. Дробная часть 0,500. Целая часть 0. 0,500 умножаем на 2. Дробная часть 0,000. Целая часть 1. Итак, сверху вниз получаем число 101(2) 103,625(10) = 1100111,101(2) Точно также осуществляется перевод в системы счисления с любым основанием. Сразу нужно отметить, что этот пример специально подобран, в общем случае очень редко удаётся завершить перевод дробной части числа из десятичной системы в другие системы счисления, а потому, в подавляющем большинстве случаев, перевод можно осуществить с какой либо долей погрешности. Чем больше знаков после запятой — тем точнее приближение результата перевода к истине. В этих словах легко убедиться, если попытаться, например, перевести в двоичный код число 0,626. ps: насчет плавающей запятой тоже просто Формат чисел с плавающей запятой базируется на экспоненциальной форме записи, в которой может быть представлено любое число. Так число А может быть представлено в виде: A=m*n^q, где m - мантисса числа; q - основание системы счисления; n - порядок числа. Такая форма записи имеет недостаток: некоторые числа записываются неоднозначно (например, 0,0001 можно записать в 4 формах — 0,0001&#215;10^0, 0,001&#215;10^&#8722;1, 0,01&#215;10^&#8722;2, 0,1&#215;10^&#8722;3), поэтому распространена (особенно в информатике) также другая форма записи — нормализованная, в которой мантисса десятичного числа принимает значения от 1 (включительно) до 10 (не включительно) , а мантисса двоичного числа принимает значения от 1 (включительно) до 2 (не включительно) . В такой форме любое число (кроме 0) записывается единственным образом. Недостаток заключается в том, что в таком виде невозможно представить 0, поэтому представление чисел в информатике предусматривает специальный признак (бит) для числа 0. Это означает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля. Преобразуем десятичное число 555,55, записанное в естественной форме, в экспоненциальную форму с нормализованной мантиссой: 555,55 = 0,55555 &#215; 10&#179; . Здесь нормализованная мантисса: m = 0,55555, порядок: n = 3. <a rel="nofollow" href="http://www.5byte.ru/11/0008.php" target="_blank">http://www.5byte.ru/11/0008.php</a>

Формат хранения вещественных чисел в разных языках разный, но во всяком случае такого маразма как дробные двоичные числа на самом деле в природе не существует. Для каждого такого числа вычисляется мантисса и экспонента, и они сжимаются определенным образом. В уме или на бумажке перевести вещественное число в двоичную форму не получится.

Требуется перевести дробное десятичное число 206,116 в дробное двоичное число. Перевод целой части дает 206=11001110(для этого мы делим 206 на два и записываем остатки от деления) , затем дробную часть умножаем на основание 2, до тех пор, пока дробная часть не будет равна нулю, занося целые части произведения в разряды после запятой искомого дробного двоичного числа: .116 • 2 = 0.232 .232 • 2 = 0.464 .464 • 2 = 0.928 .928 • 2 = 1.856 .856 • 2 = 1.712 .712 • 2 = 1.424 .424 • 2 = 0.848 .848 • 2 = 1.696 .696 • 2 = 1.392 .784 • 2 = 0.784 Получим: 206=11001110,0001110110

как нарисовать казу бееее ееее еееее

touch.otvet.mail.ru

не так уж и сложно — журнал "Рутвет"

Оглавление:

  1. Как возникли дроби
  2. Появление простых дробей
  3. Индийские цифры
  4. Позиционная система и десятичные дроби
  5. Двоичная система: математика опять без дробей
  6. Алгоритм перевода обыкновенных дробей в десятичные
  7. Примеры перевода
Как перевести дробь в десятичную? В наше время, когда вычислительные средства электроники всегда под рукой, простые дроби многим кажутся анахронизмом, а вопрос об их переводе – неуместным. Тем не менее, простые дроби упрямо продолжают существовать. В известном MS Office есть специальные значки 3/4, 1/3 и т.п.

Но если все знают, что 3/4 = 0,75, то запись 1/3 = 0,3333… или 1/3 = 0,(3) может вызвать недоумение у человека, отвыкшего считать без калькулятора, даже если он в свое время успешно прошел школьный курс арифметики. Так нужно ли уметь переводить дроби друг в друга? Что-то там помнится из пятого класса, это такая скука… Не такая уж и скука, между прочим, и может пригодиться. Для начала обратимся к истории.

Как возникли дроби

Впервые дроби появились в Древнем Вавилоне где-то за 2000 лет до новой эры и были шестидесятиричными: их знаменатель равнялся 60. Математикой в Вавилоне занимались жрецы, они же в своих занятиях столкнулись со случаями, когда нужно было знать соотношение чисел, друг на друга не делящихся.

Жрецы просто подобрали число, которое достаточно развитый человек еще может удержать в уме, имеющее максимальное количество простых делителей. В самом деле, 60 делится и на 2, и на 3, и на 5, и соответственно, на все кратные им числа без остатка. Знаменатель 60 вавилонских дробей был своего рода эталоном для сравнения чисел.

Но для средних умов – купцов, ремесленников, строителей – основание 60 было все же слишком большим. И плохо согласовывалось с удобным для практики счетом на пальцах рук, которых 10. Да и особых значков для цифр тогда еще не было; все действия записывались словами. Представляете? Лучше не надо.

Появление простых дробей

Следующий шаг сделали древние греки, которые свели математику к геометрическим построениям. Это было, по тем временам, очень наглядно. Развел ножки циркуля, отложил отрезок пять раз. Затем его же – семь раз. И сразу видно, какой насколько больше. Расположил отрезки параллельно на определенном расстоянии, провел прямые через их концы – видно, какой угол получился.

Современному человеку, даже специалисту, трудно представить себе такую математику, поэтому многие грандиозные сооружения и замечательные машины древности приписываются сегодня то ли инопланетянам, то ли атлантам, то ли еще кому-то, кроме тех людей, которые их на самом деле сделали.

Геометризация математики позволяла сравнивать без какого-либо выделенного эталона любые числа, делятся они друг на друга или нет. Поэтому дроби стали простыми: 3/11; 123/768 и т.п.

До поры, до времени, пока для практики не требовались очень большие и очень малые числа, простые дроби были вне конкуренции.

Индийские цифры

Революцию в математике произвели не позднее V в. н. э. индийцы, придумав отдельные значки для цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Они шли от того же счета на пальцах, поэтому и значков придумали 10, а не 12 или 60. Достаточно удобно – два простых делителя, 2 и 5 – и без труда может запомнить любой. 12 (дюжина) перед 10 не имеет преимущества, т.к. у него тоже два простых делителя: 2 и 3, а значков для записи требуется на два больше.

Не позднее VII в. индийские цифры пришли в Китай и к арабам, а от тех, в Х в. – в Европу. Поэтому у нас индийские цифры называются арабскими.

Позиционная система и десятичные дроби

Индийские цифры позволяли записывать любое, сколь угодно большое число в т. наз. позиционной системе. Каждая цифра слева от предыдущей считалась умноженной на 10. 458 = 4х10х10 + 5х10 + 8. 10 в таком случае – основание системы счисления. И оно же самым естественным образом становилось универсальным знаменателем дробей, вроде вавилонского 60, но доступным обычному уму.

Появление позиционной системы во многом способствовало прогрессу науки и техники. Геометрия циркуля и линейки тут выдохлась – ее точность была ограниченной. А математика становилась все более изощренной и оперировала все более абстрактными понятиями.

В 1617 г. английский математик Непер предложил целую (основание) и дробную (мантиссу) часть десятичной дроби разделять запятой, а знаменатель 10 не писать вовсе, раз он везде один и тот же. Теперь десятичной дробью можно было записывать и сколь угодно малые числа. А для невообразимо малых позже придумали экспоненциальную форму записи. Скажем, 7,37Е-7 будет 0,000000737. Она же оказалась удобной для отображения на дисплеях электронных устройств.

Есть ли у простых дробей будущее? Казалось бы, нет. Куда там, если даже десятичные отступают под натиском процентов. Но не так-то все просто.

Двоичная система: математика опять без дробей

Цифровые компьютеры работают в системе счисления с основанием 2 (двоичной). В ней всего две цифры – 0 и 1; включено/выключено; верно/неверно, а каждая «левая» цифра считается умноженной на 2 относительно «правой». Перевод двоичного кода в обычные десятичные числа делают специальные программы.

Кстати, в двоичной системе дробей вовсе нет, т.к. 1 на себя всегда делится с результатом тоже 1.

Развитие компьютерной техники идет по пути все большей наглядности результатов. Если в 50-х годах специалист по ЭВМ обязан был уметь читать двоичный код на перфоленте так же, как обычные цифры на бумаге, то теперь он же на цифровую распечатку может и не взглянуть – на дисплее ясно видно, в геометрических образах, как идет процесс.

Остается только удивляться гению древних греков, сразу поставивших наглядность во главу угла. Что бы они натворили, будь у них компьютеры?

Алгоритм перевода обыкновенных дробей в десятичные

Перевод обыкновенных дробей в десятичные делается последовательным делением числителя на знаменатель, затем остатка, умноженного на 10, опять на знаменатель, следующего остатка, опять умноженного на 10, снова на знаменатель, и так до тех пор, пока остатка не останется, либо не выявится период десятичной дроби, либо не будет достигнута заданная точность.

Числа, получившиеся до первого остатка, пишем до запятой; они дадут основание десятичной дроби.

Числа, получившиеся от деления остатков, умноженных на 10, пишем после запятой. Они дадут мантиссу.

Скажем сразу: не всякую простую дробь можно перевести в десятичную точно. Если знаменатель делится на 3, 7 или другое, не кратное 2 или 5, число, то получится бесконечная периодическая десятичная дробь. Период такой дроби принято брать в круглые скобки. Скажем, 2/3 = 0,(6). Либо округлять с заданной точностью, наподобие 0,6667. Период может оказаться очень длинным, тогда останавливаются на следующем, после достижения заданной точности, знаке. 2/3 с точностью в 1% будет 0,667.

Есть числа, которые невозможно выразить отношением любых целых чисел. Математики называют их иррациональными. Это всем известное ПИ – отношение длины окружности к ее диаметру, основание натурального логарифма е и другие. Такие числа записываются бесконечной непериодической десятичной дробью. Останавливаются по достижении нужной точности + один следующий знак.

Примеры перевода

Числитель больше знаменателя

Допустим, есть дробь 362/128.

  1. 362:128 = 2 + 106 в остатке (362 = 128х2 + 106 = 256 +106). Мантисса десятичной дроби будет равна 2, т.к. сразу же получился остаток.
  2. 106х10 = 1060:128 = 1060 – (128х8 = 1024) = 8 + 36 в остатке. 8 – первая цифра после запятой.
  3. 36х10 = 360:128 = 2 + 104 в остатке. 2 – вторая цифра после запятой.
  4. 1040:128 = 8 + 16 в остатке. 8 – третья цифра после запятой.
  5. 160:128 = 1 + 32 в остатке. 1 – четвертая цифра после запятой.
  6. 320:128 = 2 + 64 в остатке. 2 – пятая цифра после запятой.
  7. 640:128 = 5 – шестая цифра после запятой, остатка не осталось, и мы имеем 362/128 = 2,828125.

Числитель меньше знаменателя

Считаем числитель первым остатком. Сразу умножаем его на 10, и пишем ноль с запятой (0, ). Если числитель опять меньше знаменателя, считаем его вторым остатком, умножаем опять на 10 (всего 100), а после запятой дописываем еще ноль, и так далее, пока не получим числитель больше знаменателя. Тогда делим, как в примере первом.

3/8 = ?. 3х10 = 30; 30:8 = 3 + 6 в остатке; 6х10 = 60; 60:8 = 7 + 4 в остатке; 4х10 = 40; 40:8 = 5.

3/8 = 0,375.

Тогда 3/80 будет 0,0375; 3/800 = 0,00375 и т.д.

Нули после запятой до первой отличной от нуля цифры – незначащие, а первая отличная от нуля цифра после запятой и следующие за ней называются значащими. Если дописывать после последней значащей цифры нули, они значащими не будут.

Если проделать описанную процедуру для дроби, допустим, 9/14 (вспомним, 14 делится на 7), то получим 0,64285714285714285714… Числа в мантиссе …285714… будут повторяться до бесконечности; у нас получилась бесконечная периодическая десятичная дробь. Такую дробь для полной точности записывают так: 0,64(285714).

Иррациональное число при переводе обычных дробей в десятичные получиться не может, т.к. иррациональные числа отношением целых чисел не выражаются. Если мы считаем и считаем, а периода все не видно, значит, он слишком длинный и нужно остановиться на заданной точности.

Есть правило: чем больше у знаменателя простых делителей, тем длиннее окажется период. А простые делители – это делители из простых чисел, которые делятся только на самих себя и на 1. 1, 2, 3, 5, 7, 9, 11, 13, 17, 23, 29 – это все простые числа. Математики до сих пор не знают, конечно ли количество простых чисел и по каким законам они распределяются в числовом ряду.

Не правда ли, хоть и сложновато, но вовсе не так уж и скучно?

www.rutvet.ru

Перевод правильных дробей из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную системы счисления.

Для перевода правильной десятичной дроби в другую систему эту дробь надо последовательно умножать на основание той системы, в которую она переводится. При этом умножаются только дробные части. Дробь в новой системе записывается в виде целых частей произведений, начиная с первого.

Пример.

Перевести с.с.

Результат .

Замечание. Конечной десятичной дроби в другой системе счисления может соответствовать бесконечная (иногда периодическая) дробь. В этом случае количество знаков в представлении дроби в новой системе берется в зависимости от требуемой точности.

Пример.

Перевести с.с. Точность 6 знаков.

65´ 2  
3 ´ 2
6 ´ 2
2 ´ 2
4 ´ 2
8 ´ 2
6 ´ 2
  . . .

 

 

Результат .

 

 

Для перевода неправильной десятичной дроби в систему счисления с недесятичным основанием необходимо отдельно перевести целую часть и отдельно дробную.

Пример. Перевести с.с.

1) Переведем целую часть: 2) Переведем дробную часть:

     
   
 
   
     

 

Таким образом ; . Результат: .

Необходимо отметить, что целые числа остаются целыми, а правильные дроби – дробями в любой системе счисления.

 

Для перевода восьмеричного или шестнадцатеричного числа в двоичную формудостаточно заменить каждую цифру этого числа соответствующим трехразрядным двоичным числом (триадой) (Таб. 1) или четырехразрядным двоичным числом (тетрадой) (Таб. 1), при этом отбрасывают ненужные нули в старших и младших разрядах.

б) = .

 

Для перехода от двоичной к восьмеричной (шестнадцатеричной) системепоступают следующим образом: двигаясь от точки влево и вправо, разбивают двоичное число на группы по три (четыре) разряда, дополняя при необходимости нулями крайние левую и правую группы. Затем триаду (тетраду) заменяют соответствующей восьмеричной (шестнадцатеричной) цифрой.

 

Пример.

а) Перевести с.с.

б) Перевести с.с.

Перевод из восьмеричной в шестнадцатеричную систему и обратноосуществляется через двоичную систему с помощью триад и тетрад.

Пример. Перевести с.с.

 

Результат: .

Двоичная арифметика.

 

Правила выполнения арифметических действий над двоичными числами задаются таблицами двоичных сложения, вычитания и умножения.

Таблица двоичного сложения Таблица двоичного вычитания Таблица двоичного умножения
0+0=0 0+1=1 1+0=1 1+1=10 0–0=0 1–0=1 1–1=0 10–1=1 0 0=0 0 1=0 1 0=0 1 1=1

 

 

Пример.Выполнить сложение двоичных чисел: а) X=1101, Y=101;  
    единицы переноса
  1 1  

X= 1101

Y=+ 101

X+Y= 10010

 

Результат 1101+101=10010.

 

При сложениидвоичных чисел в каждом разряде производится сложение цифр слагаемых и переноса из соседнего младшего разряда, если он имеется. При этом необходимо учитывать, что 1+1 дают нуль в данном разряде и единицу переноса в следующий.

 

 

б) X=1101, Y=101, Z=111;  
  единицы переноса
  1 1 1  

X= 1101

Y= + 101

Z= + 111

X+Y+Z=11001

Результат 1101+101+111=11001.

 

 

При вычитаниидвоичных чисел в данном разряде при необходимости занимается 1 из старшего разряда. Эта занимаемая 1 равна двум 1 данного разряда.

Пример. Заданы двоичные числа X=10010 и Y=101. Вычислить X–Y.

Результат 10010 – 101=1101.

 

Умножениедвоичных чисел производится по тем же правилам, что и для десятичных с помощью таблиц двоичного умножения и сложения.

Пример. 1001 101=?

101 1001

Результат 1001 101=101101.

Делениедвоичных чисел производится по тем же правилам, что и для десятичных. При этом используются таблицы двоичного умножения и вычитания.

Пример.

1100.011: 10.01=?

 

110001.1
– 1001 101.1
 
­– 1001  
– 1001  
 

 

 

Результат 1100.011:10.01=101.1.

Упражнения 1.

1. Перевести следующие числа в десятичную систему счисления:

а) ; б) ; в) ; г) ; д) ; е) .

2. Перевести следующие числа из с.с в с.с.:

а) ; б) ; в) ; г) ; д) .

3. Перевести следующие числа из с.с в с.с. (точность 5 знаков после точки):

а) ; б) ; в) ; г) ;

д) ; е) ; ж) ; з) .

4. Перевести следующие числа в двоичную систему счисления:

а) ; б) ; в) ; г) .

5. Перевести следующие числа из одной системы счисления в другую:

а) с.с.;

б) с.с.;

в) с.с.; г) с.с..

6. Перевести следующие числа из одной системы счисления в другую:

а) с.с.; б) с.с.;

в) с.с.; г) с.с..

7. Заданы двоичные числа X и Y. Вычислить X+Y и X–Y , если:

а) X= , Y= ;

б) X= , Y= ;

в) X= , Y= .

8. Заданы двоичные числа X и Y. Вычислить X*Y и X/Y , если:

а) X= , Y= ;

б) X= , Y= ;

в) X= , Y= ;

г) X= , Y= .

 

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

КАК ОБЫКНОВЕННУЮ ДРОБЬ ПЕРЕВЕСТИ В ДЕСЯТИЧНУЮ КАЛЬКУЛЯТОР: Пример Преобразования числа 0.025 в дробь

А у вас получилось, например, 4/3. Эта дробь не переводится в десятичную. Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную! Для того, чтобы перевести обыкновенную дробь в десятичную, воспользуйтесь нашим калькулятором вверху страницы. Итак, с обыкновенными и десятичными дробями разобрались. Привести знаменатель дроби к 10, 100, 1000, 10000 и т.д.

Вы получите пошаговое, подробное объяснение процесса деления в столбик числителя на знаменатель. 2 Умножать числить и знаменатель на 10 за каждый знак после запятой десятичной дроби. Например для десятичной дроби 0.025 нужно умножить 3 раза на 10, т.к. 3 цифры после запятой.

Сократим дробь с помощью нахождения наибольшего общего делителя числителя и знаменателя и последующего деления полученного числа на числитель и знаменатель, НОД(45,100)=5. Если десятичная дробь больше 1, то в результате преобразования получается смешанное число. Целая часть при переводе остается неизменной.

Все просто, не так ли? Та же самая простота сохраняется и при записи дробного числа в любой другой системе счисления. Возьмем, например, горячо любимую каждым программистом двоичную систему и число, например, 110.001. Есть только одно но — все-таки из-за того, что здесь участвую дроби с разными знаменателями, не всегда одно и тоже число можно одинаково точно выразить в разных системах счисления.

Продолжать можно еще довольно долго, но уже сейчас видно, что 0.8 в десятичной системе это 0.11001100…(дальше очень много цифр) в двоичной. Это и есть наша погрешность перевода десятичного числа 0.8 в двоичный вид при использовании шести разрядов после запятой.

А вот там…. Давишь, давишь калькулятор, а он все полное табло каких-то циферок кажет. Приходится головой думать, как в третьем классе. Давайте уже разберёмся с дробями, наконец!

Основное свойство дроби.

Тем более, это всё просто и логично. Верхнее число называется числителем, нижнее — знаменателем. Я уж и не говорю про дробь «4/1″. Которая тоже просто «4». А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Смешанные числа практически не используются в старших классах.

А то попадётся такое число в задачке и зависните… Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буковки, это ничего не меняет. В том смысле что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями!

Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Синусы и логарифмы пусть вас не смущают, с ними дальше разберёмся. Ошибиться везде может! Особенно, если приходится сокращать не дробь типа 5/10, а дробное выражение со всякими буковками. Эту дробь сократить нельзя. Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру 375/1000.

Умножать, скажем, складывать, в квадрат возводить!? Сокращаем (делим числитель и знаменатель на 25), получаем обычную дробь: 1/4. Всё. Бывает, и не сокращается ничего.

Записываем всю дробь без всяких запятых в числитель, а в знаменатель — то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете на ЕГЭ!? Внимательно читаем и осваиваем этот процесс. Вспоминаем основное свойство дроби! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим!

С десятичными дробями всё просто. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Рассмотрим на примерах процесс преобразования десятичных дробей. Для работы с ними их всяко нужно перевести в обыкновенные дроби. Как это сделать? Дроби в старших классах не сильно досаждают. Для того, чтобы с ними работать, их всяко надо переводить в обыкновенные дроби. Но это точно надо уметь делать!

Также интересно:

Характерный

proslogogu.ru