Как упрощать алгебраические выражения. Как упрощать выражения


Как упрощать алгебраические выражения Как? Так!

Содержимое:

3 метода:

Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.

Шаги

Важные определения
  1. 1 Подобные члены. Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.
    • Например, 3x2 и 4x2 – это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.
  2. 2 . Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.
    • Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.
    • Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x).
    • Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.
  3. 3 Запомните и соблюдайте порядок выполнения операций во избежание ошибок.
    • Скобки
    • Степень
    • Умножение
    • Деление
    • Сложение
    • Вычитание

Метод 1 Приведение подобных членов

  1. 1 Запишите выражение. Простейшие алгебраические выражения (которые не содержат дробей, корней и так далее) можно решить (упростить) всего за несколько шагов.
    • Например, упростите выражение 1 + 2x - 3 + 4x.
  2. 2 Определите подобные члены (члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены).
    • Найдите подобные члены в этом выражении. Члены 2x и 4x содержат переменную одного порядка (первого). Кроме того, 1 и -3 – это свободные члены (не содержат переменную). Таким образом, в этом выражении члены 2х и 4x являются подобными, и члены 1 и -3 тоже являются подобными.
  3. 3 Приведите подобные члены. Это значит сложить или вычесть их и упростить выражение.
  4. 4 Перепишите выражение с учетом приведенных членов. Вы получите простое выражение с меньшим количеством членов. Новое выражение равно исходному.
    • В нашем примере: 1 + 2x - 3 + 4x = 6х - 2, то есть исходное выражение упрощено и с ним легче работать.
  5. 5 Соблюдайте порядок выполнения операций при приведении подобных членов. В нашем примере было легко привести подобные члены. Однако в случае сложных выражений, в которых члены заключены в скобки и присутствуют дроби и корни, привести подобные члены не так просто. В этих случаях соблюдайте порядок выполнения операций.
    • Например, рассмотрим выражение 5(3x - 1) + х((2x)/(2)) + 8 - 3x. Здесь было бы ошибкой сразу определить 3x и 2x как подобные члены и привести их, потому что сначала необходимо раскрыть скобки. Поэтому выполните операции согласно их порядку.
      • 5(3x-1) + x((2x)/(2)) + 8 - 3x
      • 15x - 5 + x(x) + 8 - 3x
      • 15x - 5 + x2 + 8 - 3x. Теперь, когда в выражении присутствуют только операции сложения и вычитания, вы можете привести подобные члены.
      • x2 + (15x - 3x) + (8 - 5)
      • x2 + 12x + 3

Метод 2 Вынесение множителя за скобки

  1. 1 Найдите (НОД) всех коэффициентов выражения. НОД – это наибольшее число, на которое делятся все коэффициенты выражения.
    • Например, рассмотрим уравнение 9x2 + 27x - 3. В этом случае НОД=3, так как любой коэффициент данного выражения делится на 3.
  2. 2 Разделите каждый член выражения на НОД. Полученные члены будут содержать меньшие коэффициенты, чем в исходном выражении.
    • В нашем примере разделите каждый член выражения на 3.
      • 9x2/3 = 3x2
      • 27x/3 = 9x
      • -3/3 = -1
      • Получилось выражение 3x2 + 9x - 1. Оно не равно исходному выражению.
  3. 3 Запишите исходное выражение как равное произведению НОД на полученное выражение. То есть заключите полученное выражение в скобки, а за скобки вынесите НОД.
    • В нашем примере: 9x2 + 27x – 3 = 3(3x2 + 9x - 1)
  4. 4 Упрощение дробных выражений с помощью вынесения множителя за скобки. Зачем просто выносить множитель за скобки, как это было сделано ранее? Затем, чтобы научиться упрощать сложные выражения, например дробные выражения. В этом случае вынесение множителя за скобки может помочь избавиться от дроби (от знаменателя).
    • Например, рассмотрим дробное выражение (9x2 + 27x - 3)/3. Воспользуйтесь вынесением множителя за скобки, чтобы упростить это выражение.
      • Вынесите множитель 3 за скобки (как вы делали это ранее): (3(3x2 + 9x - 1))/3
      • Обратите внимание, что теперь и в числителе, и в знаменателе присутствует число 3. Его можно сократить, и вы получите выражение: (3x2 + 9x – 1)/1
      • Так как любая дробь, у которой в знаменателе находится число 1, равна просто числителю, то исходное дробное выражение упрощается до: 3x2 + 9x - 1.

Метод 3 Дополнительные методы упрощения

  1. 1 Упрощение дробных выражений. Как отмечалось выше, если и в числителе, и в знаменателе присутствуют одинаковые члены (или даже одинаковые выражения), то их можно сократить. Для этого нужно вынести за скобки общий множитель у числителя или у знаменателя, или как у числителя, так и у знаменателя. Или можно разделить каждый член числителя на знаменатель и таким образом упростить выражение.
    • Например, рассмотрим дробное выражение (5x2 + 10x + 20)/10. Здесь просто разделите каждый член числителя на знаменатель (10). Но учтите, что член 5x2 не делится на 10 нацело (так как 5 меньше 10).
      • Поэтому запишите упрощенное выражение так: ((5x2)/10) + x + 2 = (1/2)x2 + x + 2.
  2. 2 Упрощение подкоренных выражений. Выражения, стоящие под знаком корня, называются подкоренными выражениями. Они могут быть упрощены через их разложение на соответствующие множители и последующий вынос одного множителя из-под корня.
    • Рассмотрим простой пример: √(90). Число 90 можно разложить на следующие множители: 9 и 10, а из 9 извлечь квадратный корень (3) и вынести 3 из-под корня.
      • √(90)
      • √(9×10)
      • √(9)×√(10)
      • 3×√(10)
      • 3√(10)
  3. 3 Упрощение выражений со степенями. В некоторых выражениях присутствуют операции умножения или деления членов со степенью. В случае умножения членов с одним основанием их степени складываются; в случае деления членов с одним основанием их степени вычитаются.
    • Например, рассмотрим выражение 6x3 × 8x4 + (x17/x15). В случае умножения сложите степени, а в случае деления – вычтите их.
      • 6x3 × 8x4 + (x17/x15)
      • (6 × 8)x3 + 4 + (x17 - 15)
      • 48x7 + x2
    • Далее приведено объяснение правила умножения и деления членов со степенью.
      • Умножение членов со степенями равносильно умножению членов на самих себя. Например, так как x3 = x × x × x и x 5 = x × x × x × x × x, то x3 × x5 = (x × x × x) × (x × x × x × x × x), или x8.
      • Аналогично, деление членов со степенями равносильно делению членов на самих себя. x5/x3 = (x × x × x × x × x)/(x × x × x). Так как подобные члены, находящиеся и в числителе, и в знаменателе, могут быть сокращены, то в числителе остается произведение двух «х», или x2.

Советы

  • Всегда помните о знаках (плюс или минус), стоящих перед членами выражения, так как многие испытывают затруднения с выбором правильного знака.
  • Попросите о помощи, если это необходимо!
  • Упрощать алгебраические выражения нелегко, но если вы набьете руку, вы сможете использовать этот навык всю жизнь.

Предупреждения

  • Убедитесь, что операции выполняются в правильном порядке.
  • Всегда ищите подобные члены и не ошибитесь с их выбором из-за степени.

Похожие статьи

Прислал: Лебедева Мария . 2017-11-12 13:14:59

kak-otvet.imysite.ru

Как упрощать алгебраические выражения

3 методика:Приведение подобных членовВынесение множителя за скобкиДополнительные методы упрощения

Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.

Шаги

Важные определения
  1. 1 Подобные члены. Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.
    • Например, 3x2 и 4x2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.
  2. 2 Разложение на множители. Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.
    • Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.
    • Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x).
    • Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.
  3. 3 Запомните и соблюдайте порядок выполнения операций во избежание ошибок.
    • Скобки
    • Степень
    • Умножение
    • Деление
    • Сложение
    • Вычитание

Метод 1 из 3: Приведение подобных членов

  1. 1 Запишите выражение. Простейшие алгебраические выражения (которые не содержат дробей, корней и т.п.) можно решить (упростить) всего за несколько шагов.
    • Например, упростите выражение 1 + 2x - 3 + 4x.
  2. 2 Определите подобные члены (члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены).
    • Найдите подобные члены в этом выражении. Члены 2x и 4x содержат переменную одного порядка (первого). Кроме того, 1 и -3 – это свободные члены (не содержат переменную). Таким образом, в этом выражении члены 2х и 4x являются подобными, и члены 1 и -3 тоже являются подобными.
  3. 3 Приведите подобные члены. Это значит сложить или вычесть их и упростить выражение.
  4. 4 Перепишите выражение с учетом приведенных членов. Вы получите простое выражение с меньшим количеством членов. Новое выражение равно исходному.
    • В нашем примере: 1 + 2x - 3 + 4x = 6х - 2, то есть исходное выражение упрощено и с ним легче работать.
  5. 5 Соблюдайте порядок выполнения операций при приведении подобных членов. В нашем примере было легко привести подобные члены. Однако в случае сложных выражений, в которых члены заключены в скобки и присутствуют дроби и корни, привести подобные члены не так просто. В этих случаях соблюдайте порядок выполнения операций.
    • Например, рассмотрим выражение 5(3x - 1) + х((2x)/(2)) + 8 - 3x. Здесь было бы ошибкой сразу определить 3x и 2x как подобные члены и привести их, потому что сначала необходимо раскрыть скобки. Поэтому выполните операции согласно их порядку.
      • 5(3x-1) + x((2x)/(2)) + 8 - 3x
      • 15x - 5 + x(x) + 8
      • 15x - 5 + x2 + 8 - 3x. Теперь, когда в выражении присутствуют только операции сложения и вычитания, вы можете привести подобные члены.
      • x2 + (15x - 3x) + (8 - 5)
      • x2 + 12x + 3

Метод 2 из 3: Вынесение множителя за скобки

  1. 1 Найдите наибольший общий делитель (НОД) всех коэффициентов выражения. НОД – это наибольшее число, на которое делятся все коэффициенты выражения.
    • Например, рассмотрим уравнение 9x2 + 27x - 3. В этом случае НОД=3, так как любой коэффициент данного выражения делится на 3.
  2. 2 Разделите каждый член выражения на НОД. Полученные члены будут содержать меньшие коэффициенты, чем в исходном выражении.
    • В нашем примере разделите каждый член выражения на 3.
      • 9x2/3 = 3x2
      • 27x/3 = 9x
      • -3/3 = -1
      • Получилось выражение 3x2 + 9x - 1. Оно не равно исходному выражению.
  3. 3 Запишите исходное выражение как равное произведению НОД на полученное выражение. То есть заключите полученное выражение в скобки, а за скобки вынесите НОД.
    • В нашем примере: 9x2 + 27x – 3 = 3(3x2 + 9x - 1)
  4. 4 Упрощение дробных выражений с помощью вынесения множителя за скобки. Зачем просто выносить множитель за скобки, как это было сделано ранее? Затем, чтобы научиться упрощать сложные выражения, например дробные выражения. В этом случае вынесение множителя за скобки может помочь избавиться от дроби (от знаменателя).
    • Например, рассмотрим дробное выражение (9x2 + 27x - 3)/3. Воспользуйтесь вынесением множителя за скобки, чтобы упростить это выражение.
      • Вынесите множитель 3 за скобки (как вы делали это ранее): (3(3x2 + 9x - 1))/3
      • Обратите внимание, что теперь и в числителе, и в знаменателе присутствует число 3. Его можно сократить и вы получите выражение: (3x2 + 9x – 1)/1
      • Так как любая дробь, у которой в знаменателе находится число 1, равна просто числителю, то исходное дробное выражение упрощается до: 3x2 + 9x - 1.

Метод 3 из 3: Дополнительные методы упрощения

  1. 1 Упрощение дробных выражений. Как отмечалось выше, если и в числителе, и в знаменателе присутствуют одинаковые члены (или даже одинаковые выражения), то их можно сократить. Для этого нужно вынести за скобки общий множитель у числителя, или у знаменателя, или как у числителя, так и у знаменателя. Или можно разделить каждый член числителя на знаменатель и таким образом упростить выражение.
    • Например, рассмотрим дробное выражение (5x2 + 10x + 20)/10. Здесь просто разделите каждый член числителя на знаменатель (10). Но учтите, что член 5x2 не делится на 10 нацело (так как 5 меньше 10).
      • Поэтому запишите упрощенное выражение так: ((5x2)/10) + x + 2 = (1/2)x2 + x + 2.
  2. 2 Упрощение подкоренных выражений. Выражения, стоящие под знаком корня, называются подкоренными выражениями. Они могут быть упрощены через их разложение на соответствующие множители и последующий вынос одного множителя из-под корня.
    • Рассмотрим простой пример: √(90). Число 90 можно разложить на следующие множители: 9 и 10, а из 9 извлечь квадратный корень (3) и вынести 3 из-под корня.
      • √(90)
      • √(9×10)
      • √(9)×√(10)
      • 3×√(10)
      • 3√(10)
  3. 3 Упрощение выражений со степенями. В некоторых выражениях присутствуют операции умножения или деления членов со степенью. В случае умножения членов с одним основанием их степени складываются; в случае деления членов с одним основанием их степени вычитаются.
    • Например, рассмотрим выражение 6x3 × 8x4 + (x17/x15). В случае умножения сложите степени, а в случае деления – вычтите их.
      • 6x3 × 8x4 + (x17/x15)
      • (6 × 8)x3 + 4 + (x17 - 15)
      • 48x7 + x2
    • Далее приведено объяснение правила умножения и деления членов со степенью.
      • Умножение членов со степенями равносильно умножению членов на самих себя. Например, так как x3 = x × x × x и x 5 = x × x × x × x × x, то x3 × x5 = (x × x × x) × (x × x × x × x × x), или x8.
      • Аналогично, деление членов со степенями равносильно делению членов на самих себя. x5/x3 = (x × x × x × x × x)/(x × x × x). Так как подобные члены, находящиеся и в числителе, и в знаменателе, могут быть сокращены, то в числителе остается произведение двух «х», или x2.

Советы

  • Упрощать алгебраические выражения нелегко, но если вы набьете в этом руку, вы сможете использовать этот навык всю жизнь.
  • Попросите о помощи, если это необходимо!
  • Всегда помните о знаках (плюс или минус), стоящих перед членами выражения, так как многие испытывают затруднения с выбором правильного знака.

Предупреждения

  • Убедитесь, что операции выполняются в правильном порядке.
  • Всегда ищите подобные члены и не ошибитесь с их выбором из-за степени.

ves-mir.3dn.ru

Как упрощать алгебраические выражения

Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.

Шаги Править

Важные определения Править
Подобные члены. Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.
  • Например, 3x 2 и 4x 2 – это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x 2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.
Разложение на множители. Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.
  • Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.
  • Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x) .
  • Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.
Запомните и соблюдайте порядок выполнения операций во избежание ошибок.
  • Скобки
  • Степень
  • Умножение
  • Деление
  • Сложение
  • Вычитание
Запишите выражение. Простейшие алгебраические выражения (которые не содержат дробей, корней и так далее) можно решить (упростить) всего за несколько шагов.
  • Например, упростите выражение 1 + 2x - 3 + 4x .
Определите подобные члены (члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены).
  • Найдите подобные члены в этом выражении. Члены 2x и 4x содержат переменную одного порядка (первого). Кроме того, 1 и -3 – это свободные члены (не содержат переменную). Таким образом, в этом выражении члены 2х и 4x являются подобными, и члены 1 и -3 тоже являются подобными.
Приведите подобные члены. Это значит сложить или вычесть их и упростить выражение. Перепишите выражение с учетом приведенных членов. Вы получите простое выражение с меньшим количеством членов. Новое выражение равно исходному.
  • В нашем примере: 1 + 2x - 3 + 4x = 6х - 2. то есть исходное выражение упрощено и с ним легче работать.
Соблюдайте порядок выполнения операций при приведении подобных членов. В нашем примере было легко привести подобные члены. Однако в случае сложных выражений, в которых члены заключены в скобки и присутствуют дроби и корни, привести подобные члены не так просто. В этих случаях соблюдайте порядок выполнения операций.
  • Например, рассмотрим выражение 5(3x - 1) + х((2x)/(2)) + 8 - 3x. Здесь было бы ошибкой сразу определить 3x и 2x как подобные члены и привести их, потому что сначала необходимо раскрыть скобки. Поэтому выполните операции согласно их порядку.
    • 5(3x-1) + x((2x)/(2)) + 8 - 3x
    • 15x - 5 + x(x) + 8 - 3x
    • 15x - 5 + x 2 + 8 - 3x. Теперь. когда в выражении присутствуют только операции сложения и вычитания, вы можете привести подобные члены.
    • x 2 + (15x - 3x) + (8 - 5)
    • x 2 + 12x + 3

Метод 2 из 3:Вынесение множителя за скобки Править

Найдите наибольший общий делитель (НОД) всех коэффициентов выражения. НОД – это наибольшее число, на которое делятся все коэффициенты выражения.
  • Например, рассмотрим уравнение 9x 2 + 27x - 3. В этом случае НОД=3, так как любой коэффициент данного выражения делится на 3.
Разделите каждый член выражения на НОД. Полученные члены будут содержать меньшие коэффициенты, чем в исходном выражении.
  • В нашем примере разделите каждый член выражения на 3.
    • 9x 2 /3 = 3x 2
    • 27x/3 = 9x
    • -3/3 = -1
    • Получилось выражение 3x 2 + 9x - 1. Оно не равно исходному выражению.
Запишите исходное выражение как равное произведению НОД на полученное выражение. То есть заключите полученное выражение в скобки, а за скобки вынесите НОД.
  • В нашем примере: 9x 2 + 27x – 3 = 3(3x 2 + 9x - 1)
Упрощение дробных выражений с помощью вынесения множителя за скобки. Зачем просто выносить множитель за скобки, как это было сделано ранее? Затем, чтобы научиться упрощать сложные выражения, например дробные выражения. В этом случае вынесение множителя за скобки может помочь избавиться от дроби (от знаменателя).
  • Например, рассмотрим дробное выражение (9x 2 + 27x - 3)/3. Воспользуйтесь вынесением множителя за скобки, чтобы упростить это выражение.
    • Вынесите множитель 3 за скобки (как вы делали это ранее): (3(3x 2 + 9x - 1))/3
    • Обратите внимание, что теперь и в числителе, и в знаменателе присутствует число 3. Его можно сократить, и вы получите выражение: (3x 2 + 9x – 1)/1
    • Так как любая дробь, у которой в знаменателе находится число 1, равна просто числителю, то исходное дробное выражение упрощается до: 3x 2 + 9x - 1 .

Метод 3 из 3:Дополнительные методы упрощения Править

Упрощение дробных выражений. Как отмечалось выше, если и в числителе, и в знаменателе присутствуют одинаковые члены (или даже одинаковые выражения), то их можно сократить. Для этого нужно вынести за скобки общий множитель у числителя или у знаменателя, или как у числителя, так и у знаменателя. Или можно разделить каждый член числителя на знаменатель и таким образом упростить выражение.
  • Например, рассмотрим дробное выражение (5x 2 + 10x + 20)/10. Здесь просто разделите каждый член числителя на знаменатель (10). Но учтите, что член 5x 2 не делится на 10 нацело (так как 5 меньше 10).
    • Поэтому запишите упрощенное выражение так: ((5x 2 )/10) + x + 2 = (1/2)x 2 + x + 2.
Упрощение подкоренных выражений. Выражения, стоящие под знаком корня, называются подкоренными выражениями. Они могут быть упрощены через их разложение на соответствующие множители и последующий вынос одного множителя из-под корня.
  • Рассмотрим простой пример: √(90). Число 90 можно разложить на следующие множители: 9 и 10, а из 9 извлечь квадратный корень (3) и вынести 3 из-под корня.
    • √(90)
    • √(9×10)
    • √(9)×√(10)
    • 3×√(10)
    • 3√(10)
Упрощение выражений со степенями. В некоторых выражениях присутствуют операции умножения или деления членов со степенью. В случае умножения членов с одним основанием их степени складываются, в случае деления членов с одним основанием их степени вычитаются.
  • Например, рассмотрим выражение 6x 3 × 8x 4 + (x 17 /x 15 ). В случае умножения сложите степени, а в случае деления – вычтите их.
    • 6x 3 × 8x 4 + (x 17 /x 15 )
    • (6 × 8)x 3 + 4 + (x 17 - 15 )
    • 48x 7 + x 2
  • Далее приведено объяснение правила умножения и деления членов со степенью.
    • Умножение членов со степенями равносильно умножению членов на самих себя. Например, так как x 3 = x × x × x и x 5 = x × x × x × x × x, то x 3 × x 5 = (x × x × x) × (x × x × x × x × x), или x 8 .
    • Аналогично, деление членов со степенями равносильно делению членов на самих себя. x 5 /x 3 = (x × x × x × x × x)/(x × x × x). Так как подобные члены, находящиеся и в числителе, и в знаменателе, могут быть сокращены, то в числителе остается произведение двух «х», или x 2 .

how.qip.ru

Как упрощать алгебраические выражения

Разложение на множители. Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число. Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5. Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x). Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.

Запомните и соблюдайте порядок выполнения операций во избежание ошибок. Скобки Степень Умножение Деление Сложение Вычитание

Запишите выражение. Простейшие алгебраические выражения (которые не содержат дробей, корней и т.п.) можно решить (упростить) всего за несколько шагов. Например, упростите выражение 1 + 2x - 3 + 4x.

Определите подобные члены (члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены). Найдите подобные члены в этом выражении. Члены 2x и 4x содержат переменную одного порядка (первого). Кроме того, 1 и -3 – это свободные члены (не содержат переменную). Таким образом, в этом выражении члены 2х и 4x являются подобными, и члены 1 и -3 тоже являются подобными.

Приведите подобные члены. Это значит сложить или вычесть их и упростить выражение. 2x + 4x = 6х 1 - 3 = -2

Соблюдайте порядок выполнения операций при приведении подобных членов. В нашем примере было легко привести подобные члены. Однако в случае сложных выражений, в которых члены заключены в скобки и присутствуют дроби и корни, привести подобные члены не так просто. В этих случаях соблюдайте порядок выполнения операций. Например, рассмотрим выражение 5(3x - 1) + х((2x)/(2)) + 8 - 3x. Здесь было бы ошибкой сразу определить 3x и 2x как подобные члены и привести их, потому что сначала необходимо раскрыть скобки. Поэтому выполните операции согласно их порядку. 5(3x-1) + x((2x)/(2)) + 8 - 3x 15x - 5 + x(x) + 8 15x - 5 + x2 + 8 - 3x. Теперь, когда в выражении присутствуют только операции сложения и вычитания, вы можете привести подобные члены. x2 + (15x - 3x) + (8 - 5) x2 + 12x + 3

Найдите наибольший общий делитель (НОД) всех коэффициентов выражения. НОД – это наибольшее число, на которое делятся все коэффициенты выражения. Например, рассмотрим уравнение 9x2 + 27x - 3. В этом случае НОД=3, так как любой коэффициент данного выражения делится на 3.

Разделите каждый член выражения на НОД. Полученные члены будут содержать меньшие коэффициенты, чем в исходном выражении. В нашем примере разделите каждый член выражения на 3. 9x2/3 = 3x2 27x/3 = 9x -3/3 = -1 Получилось выражение 3x2 + 9x - 1. Оно не равно исходному выражению.

Перепишите выражение с учетом приведенных членов. Вы получите простое выражение с меньшим количеством членов. Новое выражение равно исходному. В нашем примере: 1 + 2x - 3 + 4x = 6х - 2, то есть исходное выражение упрощено и с ним легче работать.

Запишите исходное выражение как равное произведению НОД на полученное выражение. То есть заключите полученное выражение в скобки, а за скобки вынесите НОД. В нашем примере: 9x2 + 27x – 3 = 3(3x2 + 9x - 1)

Упрощение дробных выражений с помощью вынесения множителя за скобки. Зачем просто выносить множитель за скобки, как это было сделано ранее? Затем, чтобы научиться упрощать сложные выражения, например дробные выражения. В этом случае вынесение множителя за скобки может помочь избавиться от дроби (от знаменателя). Например, рассмотрим дробное выражение (9x2 + 27x - 3)/3. Воспользуйтесь вынесением множителя за скобки, чтобы упростить это выражение. Вынесите множитель 3 за скобки (как вы делали это ранее): (3(3x2 + 9x - 1))/3 Обратите внимание, что теперь и в числителе, и в знаменателе присутствует число 3. Его можно сократить и вы получите выражение: (3x2 + 9x – 1)/1 Так как любая дробь, у которой в знаменателе находится число 1, равна просто числителю, то исходное дробное выражение упрощается до: 3x2 + 9x - 1.

Упрощение дробных выражений. Как отмечалось выше, если и в числителе, и в знаменателе присутствуют одинаковые члены (или даже одинаковые выражения), то их можно сократить. Для этого нужно вынести за скобки общий множитель у числителя, или у знаменателя, или как у числителя, так и у знаменателя. Или можно разделить каждый член числителя на знаменатель и таким образом упростить выражение. Например, рассмотрим дробное выражение (5x2 + 10x + 20)/10. Здесь просто разделите каждый член числителя на знаменатель (10). Но учтите, что член 5x2 не делится на 10 нацело (так как 5 меньше 10). Поэтому запишите упрощенное выражение так: ((5x2)/10) + x + 2 = (1/2)x2 + x + 2.

Упрощение подкоренных выражений. Выражения, стоящие под знаком корня, называются подкоренными выражениями. Они могут быть упрощены через их разложение на соответствующие множители и последующий вынос одного множителя из-под корня. Рассмотрим простой пример: √(90). Число 90 можно разложить на следующие множители: 9 и 10, а из 9 извлечь квадратный корень (3) и вынести 3 из-под корня. √(90) √(9×10) √(9)×√(10) 3×√(10) 3√(10)

Упрощение выражений со степенями. В некоторых выражениях присутствуют операции умножения или деления членов со степенью. В случае умножения членов с одним основанием их степени складываются; в случае деления членов с одним основанием их степени вычитаются. Например, рассмотрим выражение 6x3 × 8x4 + (x17/x15). В случае умножения сложите степени, а в случае деления – вычтите их. 6x3 × 8x4 + (x17/x15) (6 × 8)x3 + 4 + (x17 - 15) 48x7 + x2 Далее приведено объяснение правила умножения и деления членов со степенью. Умножение членов со степенями равносильно умножению членов на самих себя. Например, так как x3 = x × x × x и x 5 = x × x × x × x × x, то x3 × x5 = (x × x × x) × (x × x × x × x × x), или x8. Аналогично, деление членов со степенями равносильно делению членов на самих себя. x5/x3 = (x × x × x × x × x)/(x × x × x). Так как подобные члены, находящиеся и в числителе, и в знаменателе, могут быть сокращены, то в числителе остается произведение двух «х», или x2.

257573257574257575257576257577257578257579257580257581257582257583257584257585257586

how.qip.ru

Упростить выражение типичные примеры для тестов по математике

Упростить выражение примеры.

Очень часто на тестах по математике необходимо решить пример на упрощение выражений . Рассмотри некоторые типичные примеры.

Переворачиваем дробь, пользуясь правилом деления на дробь.

Воспользуемся правилом умножения дробей.

Производим сокращение.

Воспользуемся формулой разности квадратов.

Разложим числитель дроби на множители.

Производим сокращение.

Разложим числитель и знаменатель дроби на множители.

Производим сокращение.

Разложим числитель дроби на множители.

Сдавая тесты по математике, указываем вот такой правильный ответ:

Рассмотри еще один пример

Производим сложение дробей с одинаковыми знаменателями.

Приводим дроби к общему знаменателю.

Производим сложение дробей с одинаковыми знаменателями.

Раскрываем скобки.

Приводим подобные члены.

Сдавая тесты по математике, указываем правильный ответ:

Запись создана: Четверг, 17 Ноябрь 2011 в 19:14 и находится в рубриках Алгебраические преобразования, уравнения, неравенства. Вы можете следить за комментариями к этой записи через ленту RSS 2.0. Комментарии и уведомления в настоящее время закрыты.

testmath.ru

Как упростить выражение | Сделай все сам

Дабы стремительно и результативно изготавливать расчеты, упрощайте математические выражения. Для этого используйте математические соотношения, дозволяющие сделать выражение короче, а расчеты упростить.

Вам понадобится

  • — представление одночлена многочлена;
  • — формулы сокращенного умножения;
  • — действия с дробями;
  • — основные тригонометрические тождества.

Инструкция

1. Если в выражении имеются одночлены с идентичными множителями, обнаружьте сумму показателей при них и умножьте на цельный для них множитель. Скажем, если есть выражение 2•а-4•а+5•а+а=(2-4+5+1)?а=4?а.

2. Для облегчения выражения используйте формулы сокращенного умножения. К особенно знаменитым относятся квадрат разности, разность квадратов, разность и сумма кубов. Скажем, если есть выражение 256-384+144, представьте его как 16?-2•16•12+12?=(16-12)?=4?=16.

3. В том случае, если выражение представляет собой естественную дробь, выделите из числителя и знаменателя всеобщий множитель и сократите дробь на него. Скажем, если необходимо сократить дробь (3•a?-6•a•b+3•b?)/(6?a?-6?b?), вынесите из числителя и знаменателя всеобщие множители в числителе это будет 3, в знаменателе 6. Получите выражение (3•(a?-2•a•b+b?))/(6?(a?-b?)). Сократите числитель и знаменатель на 3 и примените к оставшимся выражениям формулы сокращенного умножения. Для числителя это квадрат разности, а для знаменателя разность квадратов. Получите выражение (a-b)?/(2? (a+b)?(a-b)) сократив его на всеобщий множитель a-b, получите выражение (a-b)/(2? (a+b)), которое при определенных значениях переменных значительно легче посчитать.

4. Если одночлены имеют идентичные множители, возведенные в степень, то при их суммировании следите, дабы степени были равны, напротив сводить сходственные невозможно. Скажем, если есть выражение 2?m?+6•m?-m?-4•m?+7, то при сведении сходственных получится m?+2•m?+7.

5. При облегчении тригонометрических тождеств используйте формулы для их реформирования. Основное тригонометрическое тождество sin?(x)+cos?(x)=1, sin(x)/cos(x)=tg(x), 1/ tg(x)= ctg(x), формулы суммы и разности доводов, двойного, тройного довода и другие. Скажем, (sin(2?x)- cos(x))/ ctg(x). Распишите формулу двойного довода и котангенса, как отношения косинуса на синус. Получите (2? sin(x)• cos(x)- cos(x))• sin(x)/cos(x). Вынесите всеобщий множитель, cos(x) и сократите дробь cos(x)•(2? sin(x) — 1)• sin(x)/cos(x)= (2? sin(x) — 1) • sin(x).

Краткость, как говорится, — сестра дара. Всякому хочется блеснуть даром, но вот его сестра — штука трудная. Феноменальные мысли отчего-то сами собой облекаются в сложноподчинённые предложения со большинством деепричастных циклов. Впрочем в ваших силах упростить свои предложения и сделать их внятными и доступными каждым.

Инструкция

1. Дабы облегчить адресату (будь то слушатель либо читатель) жизнь, постарайтесь заменять причастные и деепричастные циклы короткими придаточными предложениями, исключительно если вышеуказанных циклов слишком много в одном предложении. «Пришедший домой кот, только что съевший мышь, громко мурлыча, ласкался к владельцу, пытаясь заглянуть ему в глаза, веря выпросить рыбу, принесённую из магазина» — такое не пойдёт. Разбейте сходственную конструкцию на несколько частей, не спешите и не пытайтесь сказать всё одним предложением, и будет вам блаженство.

2. Если вы замыслили феноменальное высказывание, но в нём оказалось слишком много придаточных предложений (тем больше с одним союзом), то отличнее разбить высказывание на несколько отдельных предложений либо опустить какой-то элемент. «Мы решили, что он расскажет Марине Васильевне, что Катя скажет Вите, что…» — дозволено продолжать беспредельно. Своевременно остановитесь и припомните о том человеке, кто будет это читать либо выслушивать.

3. Впрочем подводные камни кроются не только в структуре предложения. Обратите внимание на лексику. Иноязычные слова, длинные термины, слова, почерпнутые из художественной литературы 19 столетия — всё это только осложнит воспринятие. Нужно уточнить для себя, для какой аудитории вы составляете текст: технари, безусловно, осознают и трудные термины, и специфические слова; но если вы те же слова предложите учительнице литературы, вряд ли она вас поймёт.

4. Дар — великая вещь. Если вы гениальны (а людей без способностей не бывает), перед вами открывается уйма дорог. Но дар состоит не в трудности, а простоте, как ни необычно. Будьте проще, и ваши дары будут внятны и доступны каждым.

Видео по теме

«Выражением » в математике обыкновенно называют комплект арифметических и алгебраических действий с числами и переменными значениями. По аналогии с форматом записи чисел такой комплект называют «дробным» в том случае, когда он содержит операцию деления. К дробным выражениям, как и к числам в формате обычной дроби, применимы операции облегчения.

Инструкция

1. Начните с нахождения всеобщего множителя для выражений, стоящих в числителе и знаменателе дроби — это правило идентично как для численных соотношений, так и для содержащих неведомые переменные. Скажем, если в числителе стоит выражение 45*X, а в знаменателе 18*Y, то наибольшим всеобщим множителем будет число 9. Позже выполнения этого шага числитель дозволено записать как 9*5*X, а знаменатель — как 9*2*Y.

2. Если выражения в числителе и знаменателе содержат комбинацию основных математических операций (умножение, деление, сложение и вычитание), то вначале придется перенести за скобки всеобщий множитель для всякого из них в отдельности, а после этого вычленить из этих чисел крупнейший всеобщий делитель. Скажем, для выражения 45*X+180, стоящего в числителе, за скобки следует перенести множитель 45: 45*X+180 = 45*(X+4). А выражение 18+54*Y в знаменателе нужно привести к виду 18*(1+3*Y). После этого, как в предыдущем, шаге обнаружьте крупнейший всеобщий делитель вынесенных за скобки множителей: 45*X+180 / 18+54*Y = 45*(X+4) / 18*(1+3*Y) = 9*5*(X+4) / 9*2*(1+3*Y). В этом примере он тоже равен девятке.

3. Сократите обнаруженный на предыдущих шагах всеобщий множитель выражений в числителе и знаменателе дроби. Для примера из первого шага всю операцию облегчения дозволено записать так: 45*X / 18*Y = 9*5*X / 9*2*Y = 5*X / 2*Y.

4. Не неукоснительно при облегчении уменьшаемым всеобщим делителем должно быть число, это может быть и выражение, содержащее переменную. Скажем, если в числителе дроби стоит (4*X + X*Y + 12 + 3*Y), а в знаменателе (X*Y + 3*Y — 7*X — 21), то наибольшим всеобщим делителем будет выражение X+3, которое и следует сократить для облегчения выражения: (4*X + X*Y + 12 + 3*Y) / (X*Y + 3*Y — 7*X — 21) = (X+3)*(4+Y) / (X+3)*(Y-7) = (4+Y) / (Y-7).

Видео по теме

jprosto.ru

Как упростить выражение в математике

Научиться упрощать выражения в математике просто необходимо, чтобы правильно и быстро решать задачи, различные уравнения. Упрощение выражения подразумевает уменьшение количества действий, что облегчает вычисления и экономит время.

Инструкция

  • Научитесь вычислять степени с натуральными показателями. При умножении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней складываются b^m+b^n=b^(m+n). При делении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней вычитаются, причем из показателя делимого вычитается показатель делителя b^m:b^n=b^(m-n). При возведении степени в степень получается степень числа, основание которого остается прежним, а показатели перемножаются (b^m)^n=b^(mn)При возведении в степень произведения чисел в эту степень возводится каждый множитель.(abc)^m=a^m*b^m*c^m
  • Раскладывайте многочлены на множители, т.е. представляйте их в виде произведения нескольких сомножителей – многочленов и одночленов. Выносите общий множитель за скобки. Выучите основные формулы сокращенного умножения: разность квадратов, квадрат суммы, квадрат разности, сумму кубов, разность кубов, куб суммы и разности. Например, m^8+2*m^4*n^4+n^8=(m^4)^2+2*m^4*n^4+(n^4)^2. Именно эти формулы являются основными в упрощении выражений. Используйте способ выделения полного квадрата в трехчлене вида ax^2+bx+c.
  • Как можно чаще сокращайте дроби. Например, (2*a^2*b)/(a^2*b*c)=2/(a*c). Но помните, что сокращать можно только множители. Если числитель и знаменатель алгебраической дроби умножать на одно и то же число, отличное от нуля, то при этом значение дроби не изменится. Преобразовывать рациональные выражения можно двумя способами: цепочкой и по действиям. Предпочтительней второй способ, т.к. легче проверить результаты промежуточных действий.
  • Нередко в выражениях необходимо извлекать корни. Корни четной степени извлекаются только из неотрицательных выражений или чисел. Корни нечетной степени извлекаются из любых выражений.

completerepair.ru


Смотрите также