Прямоугольный треугольник и его свойства. Катет треугольника равнобедренного


Катеты прямоугольного треугольника | Онлайн калькуляторы, расчеты и формулы на GELEOT.RU

В прямоугольном треугольнике, зная катеты, можно найти гипотенузу через теорему Пифагора. Для этого нужно извлечь квадратный корень из суммы квадратов катетов. с=√(a^2+b^2 )

Площадь прямоугольного треугольника равна половине произведения катетов, а периметр – сумме катетов и гипотенузы. S=ab/2 P=a+b+c=a+b+√(a^2+b^2 )

Углы в прямоугольном треугольнике найти, зная катеты, тоже невероятно просто. Отношение одного катета к другому будет тангенсом противоположного угла и котангенсом близлежащего. (рис. 79.1) tan⁡α=a/b cot⁡α=a/b

С другой стороны, зная один из углов, можно найти второй, отняв его из 90 градусов. α=90°-β

Высота у прямоугольного треугольника всего одна, и она относится к любому из катетов как косинус прилежащего к нему угла. (рис. 79.2) cos⁡α=h/b h=b cos⁡α cos⁡β=h/a h=a cos⁡β

Формула медианы в прямоугольном треугольнике преобразуется в отношение гипотенузы к двум или радикала из суммы квадратов катетов к двум, если даны только катеты. (рис. 79.3) m_c=√(2a^2+2b^2-c^2 )/2=√(2c^2-c^2 )/2=√(c^2 )/2=c/2=√(a^2+b^2 )/2 m_b=√(2a^2+2c^2-b^2 )/2=√(2a^2+2a^2+2b^2-b^2 )/2=√(4a^2+b^2 )/2 m_a=√(2c^2+2b^2-a^2 )/2=√(2a^2+2b^2+2b^2-a^2 )/2=√(4b^2+a^2 )/2

Биссектриса, опущенная на гипотенузу, вычисляется аналогично произвольному треугольнику, с подстановкой радикала вместо гипотенузы. (рис.79.4) l_c=√(ab(a+b+c)(a+b-c))/(a+b)=√(ab((a+b)^2-с^2))/(a+b)=√(ab(a^2+2ab+b^2-a^2-b^2))/(a+b)=√(ab*2ab)/(a+b)=(ab√2)/(a+b) l_a=√(bc(a+b+c)(b+c-a) )/(b+c)=√(bc((b-c)^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+b^2 ) )/(b+c)=√(bc(2b^2+2bc) )/(b+c)=(b√(2c(b+c) ))/(b+c) l_b=√(ac(a+b+c)(a+c-b) )/(a+c)=(a√(2c(a+c) ))/(a+c)

Средние линии прямоугольного треугольника образуют внутри него еще один прямоугольный треугольник. Внутренний треугольник будет подобен внешнему, так как средние линии параллельны катетам и гипотенузе, и равны соответственно их половинам. Поскольку гипотенуза неизвестна, для нахождения средней линии M_c нужно подставить радикал из теоремы Пифагора. (рис.79.7) M_a=a/2 M_b=b/2 M_c=c/2=√(a^2+b^2 )/2

Радиус вписанной окружности в прямоугольном треугольнике вычисляется по упрощенной формуле для произвольного треугольника, а радиус описанной окружности является половиной гипотенузы и совпадает с медианой. (рис. 79.5, 79.6) r=(a+b-c)/2=(a+b-√(a^2+b^2 ))/2 R=m=c/2=√(a^2+b^2 )/2

geleot.ru

Стороны равнобедренного треугольника | Онлайн калькуляторы, расчеты и формулы на GELEOT.RU

Равнобедренный треугольник имеет две равные по значению боковые стороны a и основание b. Это позволяет рассчитать любые параметры треугольника, необходимые для решения задачи. Периметр равнобедренного треугольника равен удвоенной боковой стороне в сумме с основанием. (рис.88.1) P=2a+b

Высота, проведенная к основанию равнобедренного треугольника, делит его на два конгруэнтных прямоугольных треугольника, с половиной основания в качестве второго катета и боковой стороной как гипотенузой. Такая высота одновременно является и медианой и биссектрисой. Найти ее можно по теореме Пифагора из прямоугольного треугольника. (рис.88.2) h_b=m_b=l_b=√(a^2-(b/2)^2 )=√(4a^2-b^2 )/2

Остальные две высоты равны друг другу и считаются через формулу с произведением разностей полупериметров и сторон, где приравнены боковые стороны. (рис.88.8) h_a=(b√((4a^2-b^2)))/2a

Зная высоту, найти площадь равнобедренного треугольника можно, подставив полученное выражение в формулу, по которой площадь равна половине основания, умноженной на его высоту. S=hb/2=(b√(4a^2-b^2 ))/4

Углы в равнобедренном треугольнике распределяются следующим образом – углы при основании друг другу конгруэнтны, также как и боковые стороны, а в сумме все три угла дают 180 градусов, поэтому найти их можно двумя видами разности. α=(180°-β)/2 β=180°-2α

Если ни один из углов не дан, но есть все стороны, то можно воспользоваться теоремой косинусов, чтобы найти любой угол. cos⁡α=(b^2+c^2-a^2)/2bc=(b^2+a^2-a^2)/2ba=b^2/2ba=b/2a cos⁡β=(a^2+a^2-b^2)/(2a^2 )=(2a^2-b^2)/(2a^2 )

Медиана и биссектриса, опущенные на основание, вычисляются по формуле высоты, приведенной выше, а оставшиеся две медианы (равно как и две биссектрисы) равны друг другу, поскольку строятся на равных боковых сторонах. Вычислить медиану можно, упростив формулу произвольного треугольника. (рис. 88.3) m_a=√(2a^2+2b^2-a^2 )/2=√(a^2+2b^2 )/2

В формуле биссектрисы аналогично приравниваются боковые стороны, и ее становится возможным вычислить по упрощенной схеме. (рис. 88.4) l_a=√(ab(2a+b)(a+b-a) )/(a+b)=(b√(a(2a+b) ))/(a+b)

Средняя линия равнобедренного треугольника, параллельная основанию, равна его половине, а средние линии, параллельные боковым сторонам, равны между собой и также равны половинам самих боковых сторон. (рис. 88.5) M_b=b/2 M_a=a/2

Радиус окружности, вписанной в равнобедренной треугольник, является производной формулы для произвольного треугольника, и рассчитать его можно, зная боковую сторону и основание. (рис. 88.6) r=b/2 √((2a-b)/(2a+b))

Радиус окружности, описанной вокруг равнобедренного треугольника, также выводится из общей формулы и выглядит упрощенно следующим образом. (рис. 88.7) R=a^2/√(4a^2-b^2 )

geleot.ru

Высота и угол "α" равнобедренного треугольника

Высота равнобедренного треугольника, которая лежит под прямым углом к основанию, создает внутри еще два одинаковых прямоугольных треугольника, являясь катетом в каждом из них. Второй катет такого треугольника представляет собой половину основания, так как эта высота является одновременно медианой и биссектрисой, а гипотенузой будет боковая сторона равнобедренного треугольника. Соответственно, зная высоту и угол α при основании, через прямоугольный треугольник можно узнать стороны равнобедренного треугольника. (рис.88.2) a=h/sin⁡α b=2h/tan⁡α

Поскольку сумма всех углов в треугольнике равна 180 градусам, следовательно, угол при вершине будет равен разности 180 градусов и двух углов при основании. β=180°-2α

Периметр равнобедренного треугольника через высоту и угол α равен сумме двух отношений высоты к синусу угла и двух отношений высоты к тангенсу. Площадь, в свою очередь, преобразовывается в квадрат высоты, деленный на тангенс. P=2a+b=2h/sin⁡α +2h/tan⁡α S=hb/2=h^2/tan⁡α

Чтобы найти высоту, опущенную на боковую сторону равнобедренного треугольника (любую, так как они одинаковы), можно воспользоваться готовой формулой через стороны треугольника, заменив их на тригонометрические отношения и упростив выражение. Аналогично вычисляются медианы и биссектрисы через высоту. m_a=√(a^2+2b^2 )/2=√((h/sin⁡α )^2+2(2h/tan⁡α )^2 )/2=(h√(1/cos⁡α +8))/(2 tan⁡α ) h_a=(b√((4a^2-b^2)))/2a=(b√((4(h/sin⁡α )^2-(2h/tan⁡α )^2)))/(2 h/sin⁡α )=b sin^2⁡α l_a=(b√(a(2a+b) ))/(a+b)=(2h/tan⁡α √(h/sin⁡α (2 h/sin⁡α +2h/tan⁡α )))/(h/sin⁡α +2h/tan⁡α )=(2h√(2+2/cos⁡α ))/(tan⁡α+2 sin⁡α )

Чтобы вычислить среднюю линию, необходимо разделить на два ту сторону треугольника, которая ей параллельна. Поскольку ни одна из сторон не известна, то средняя линия, параллельная основанию, равна высоте, деленной на тангенс угла α, а средняя линия, параллельная боковой стороне равна высоте, деленной на два синуса угла α. (рис.88.5) M_b=b/2=h/tan⁡α M_a=a/2=h/(2 sin⁡α )

Чтобы вычислить радиус вписанной в равнобедренный треугольник окружности, нужно подставить вместо сторон a и b в формулу отношения высоты и тангенса или синуса соответственно, а затем упростить выражение (рис.88.6) r=b/2 √((a-2b)/(a+2b))=h/tan⁡α √((h/sin⁡α -2 2h/tan⁡α )/(h/sin⁡α +2 2h/tan⁡α ))=h/tan⁡α √((1-4 cos⁡α)/(1+4 cos⁡α ))

Радиус окружности, описанной вокруг равнобедренного треугольника также зависит от обеих сторон – основания и боковой стороны, поэтому его формула видоизменяется аналогично радиусу вписанной окружности. (рис.88.7) R=a^2/√(4a^2-b^2 )=(h/sin⁡α )^2/√(4(h/sin⁡α )^2-(2h/tan⁡α )^2 )=h/(2 sin^2⁡α )

geleot.ru

Катеты равнобедренного треугольника | Помощь школьнику

Отрезок AD перпендикулярен к плоскости равнобедренного треугольника ABC. Известно, что АВ =АС = 5 см, ВС= 6 см, AD = 12 см. Найдите расстояния от концов отрезка AD до прямой ВС. Попроси больше объяснений; Следить ? Отметить нарушение. 10.01.2014. Войти чтобы добавить комментарий.

Как найти катеты равнобедренного треугольника

    Как найти катеты равнобедренного треугольника Как найти биссектрису равнобедренного треугольника Как найти сторону треугольника, зная сторону и угол
    — тетрадь; — линейка; — карандаш; — ручка; — калькулятор.

В вопросе так же сказано, что треугольник равнобедренный. Это означает, что Катеты равны. Для решения этого типа задач введите условные обозначения. Обозначим стороны Треугольника буквами а, а, в, где а — Катеты, а в — гипотенуза. (см. рис. 1)

С = 20 (значение выбрано произвольно для иллюстрации решения)Найти: а

2а^2=с2 (это преобразование произошло потому, что в нашей конкретной задаче оба катета равны)

Катеты равнобедренного треугольника

Совет 1: Как обнаружить гипотенузу равнобедренного треугольника

Равнобедренный треугольник — треугольник, в котором две стороны равны между собой. Равные стороны именуются боковыми, а последняя — основанием. Треугольник именуется прямоугольным, если удин из углов прямой, то есть равен 90 градусам. Сторона, лежащая вопреки угла в девяносто градусов, именуется гипотенузой, а две другие — катетами.

Инструкция

1. По теореме Пифагора квадрат длины гипотенузы равен сумме квадратов катетов. Потому что дан равнобедренный треугольник, то он владеет рядом свойств, одно из которых гласит, что углы при основании равнобедренного треугольника равны. Также всякий треугольник владеет тем свойством, что сумма всех его углов равна 180 градусам. Из этих 2-х свойств следует, что прямой угол в равнобедренном треугольнике может лежать только наоборот основания, а значит, основание такого треугольника является гипотенузой, а боковые стороны катетами.

Совет 2: Как обнаружить гипотенузу треугольника

Гипотенуза – самая длинная сторона прямоугольного Треугольника . Она расположена противоположно прямому углу. Метод нахождения гипотенузы прямоугольного Треугольника зависит от того, какими начальными данными вы владеете.

Инструкция

1. Если знамениты катеты прямоугольного Треугольника , то длина гипотенузы прямоугольного Треугольника может быть обнаружена с поддержкой теоремы Пифагора — квадрат длины гипотенузы равен сумме квадратов длин катетов:с2 = а2 + b2, где а и b – длины катетов прямоугольного Треугольника .

Длина гипотенузы, как и каждая длина, неизменно величина неотрицательная.

Из того, что треугольник равнобедренный и прямоугольный следует, что его площадь равна половина площади квадрата со стороной равной длине боковой стороны, а основание такого треугольника равно диагонали такого квадрата.

Катеты равнобедренного треугольника

Совет 1: Как обнаружить гипотенузу равнобедренного треугольника

Равнобедренный треугольник — треугольник, в котором две стороны равны между собой. Равные стороны именуются боковыми, а последняя — основанием. Треугольник именуется прямоугольным, если удин из углов прямой, то есть равен 90 градусам. Сторона, лежащая вопреки угла в девяносто градусов, именуется гипотенузой, а две другие — катетами.

Инструкция

1. По теореме Пифагора квадрат длины гипотенузы равен сумме квадратов катетов. Потому что дан равнобедренный треугольник, то он владеет рядом свойств, одно из которых гласит, что углы при основании равнобедренного треугольника равны. Также всякий треугольник владеет тем свойством, что сумма всех его углов равна 180 градусам. Из этих 2-х свойств следует, что прямой угол в равнобедренном треугольнике может лежать только наоборот основания, а значит, основание такого треугольника является гипотенузой, а боковые стороны катетами.

Совет 2: Как обнаружить гипотенузу треугольника

Гипотенуза – самая длинная сторона прямоугольного Треугольника . Она расположена противоположно прямому углу. Метод нахождения гипотенузы прямоугольного Треугольника зависит от того, какими начальными данными вы владеете.

Инструкция

1. Если знамениты катеты прямоугольного Треугольника , то длина гипотенузы прямоугольного Треугольника может быть обнаружена с поддержкой теоремы Пифагора — квадрат длины гипотенузы равен сумме квадратов длин катетов:с2 = а2 + b2, где а и b – длины катетов прямоугольного Треугольника .

Длина гипотенузы, как и каждая длина, неизменно величина неотрицательная.

Из того, что треугольник равнобедренный и прямоугольный следует, что его площадь равна половина площади квадрата со стороной равной длине боковой стороны, а основание такого треугольника равно диагонали такого квадрата.

катеты равнобедренного треугольника

poiskvstavropole.ru

Высота равнобедренного треугольника | Онлайн калькулятор

Равнобедренным треугольником называется такой треугольник, у которого две из трех сторон равны между собой. Равные стороны считаются боковыми сторонами а, а третья сторона в называется основанием равнобедренного треугольника.

Соответственно, в таком треугольнике можно провести три высоты, две из которых будут равны между собой, аналогично сторонам - это высоты, опущенные на боковую сторону треугольника а, а третья высота опускается на основание. Высота треугольника проводится из угла треугольника к противолежащей стороне под прямым углом. Большинство задач с высотой треугольника решаются через прямоугольные треугольники, которые она образует.

Рассмотрим каждый случай по отдельности.

Высота равнобедренного треугольника, опущенная на основание, обладает рядом индивидуальных свойств, присущих только ей и не распространяющихся на другие высоты в таком треугольнике. В частности, высота, проведенная к основанию равнобедренного треугольника, совпадает с медианой и биссектрисой, проведенным к основанию, следовательно, она не только образует прямой угол с основанием, но и делит его на две равные части, как медиана, и аналогично делит угол пополам, как биссектриса. В итоге, высота является своеобразной осью симметрии треугольника и разделяет его на два конгруэнтных прямоугольных треугольника. В таком треугольнике высота является катетом, и чтобы найти ее длину необходимо соотнести стороны равнобедренного треугольника со сторонами прямоугольного. Боковая сторона равнобедренного треугольника становится гипотенузой, а чтобы определить второй катет, основание равнобедренного треугольника нужно разделить пополам, по свойству медианы.

Длина высоты равнобедренного треугольника равна по теореме Пифагора квадратному корню из суммы квадрата боковой стороны равнобедренного треугольника и четверти квадрата основания равнобедренного треугольника:

Второй случай, когда условиями задачи нужно найти высоту, опущенную на боковую сторону равнобедренного треугольника, раскрывается проще всего через площадь треугольника.

Площадь любого треугольника можно найти несколькими способами - например, через три стороны треугольника по формуле Герона, или через высоту, умножив ее на половину стороны, на которую она опущена. И тем, и другим способом получаются одинаковые значения площади, следовательно обе эти формулы можно друг к другу приравнять и отсюда вывести окончательную формулу высоты, опущенную на боковую сторону равнобедренного треугольника.

Формула Герона для равнобедренного треугольника будет иметь несколько упрошенный вид за счет того, что значения боковых сторон повторяются:

Площадь равнобедренного треугольника через высоту, опущенную к боковой стороне

Эту же формулу можно применять для нахождения любой высоты в равнобедренном треугольнике, если поменять в формуле соответствующие стороны местами.

Формула высоты равнобедренного треугольника через боковую сторону и угол при основании α: h=a sin⁡α

Формула через боковую сторону и угол напротив основания β:

Формула через основание и угол при нем α:

через основание и угол противолежащий ему β:

allcalc.ru

Калькулятор расчета углов равнобедренного треугольника

Треугольник с одинаковыми боковыми сторонами называется равнобедренным. В нем равны и углы при основании. Если они известны, то вычислить третий угол не составит труда. Как известно, сумма всех углов треугольника равна 180°. Если из 180° вычесть сумму двух одинаковых углов при основании (а), то найдем третий угол β:

β = 180°-2α

Если известна величина угла b, противолежащего основанию и требуется найти угол (а) при основании, необходимо из 180° вычесть известный угол β. Полученную величину делим на два, т.к. углы при основании равны.

α= (180°-β)/2

Если известны стороны равнобедренного треугольника, можно рассчитать все его углы. Чтобы найти угол при основании, проведем к основанию высоту, которая делит основание пополам, а треугольник — на два одинаковых прямоугольных треугольника. Гипотенузой вновь образованных треугольников будет боковая сторона равнобедренного треугольника (а), а одним из катетов — половина длины основания (b/2). Используя теорему косинусов определяем косинус угла (а), как отношение прилежащего к искомому углу катета (b/2) к гипотенузе (а) по формуле:

cosα= b/2a

Рассчитать угол при основании равнобедренного треугольника можно также через катеты образованного в нем прямоугольного треугольника (например, abc). Одним из его катетов (b) будет половина длины основания равнобедренного треугольника, другим катетом (а) — высота равнобедренного треугольника. Найти угол α при основании треугольника можно через тангенс угла, как отношение противолежащего ему катета (а) к прилежащему катету (b).

tg (α) = a/b

В таблицк тангенсов находим угол α в градусах. Т.к. Углы при основании равнобедренного треугольника равны, то найти третий угол не составит труда, зная, что сумма всех его углов равна 180°.

Рассчитать углы равнобедренного треугольника зная длину катетов

infofaq.ru

Прямоугольный треугольник и его свойства :: SYL.ru

Прямоугольный треугольник – треугольник, один угол которого прямой (равен 900). Следовательно, два других угла в сумме дают 900.

Стороны прямоугольного треугольника

Сторона, которая располагается напротив угла в девяносто градусов, называется гипотенузой. Две другие стороны именуются катетами. Гипотенуза всегда длиннее, чем катеты, но короче их суммы.

Прямоугольный треугольник. Свойства треугольника

Если катет находится напротив угла в тридцать градусов, то его длина соответствует половине длины гипотенузы. Отсюда вытекает, что угол, противоположный катету, длина которого соответствует половине гипотенузы, равен тридцати градусам. Катет равняется среднему пропорциональному гипотенузы и проекции, которую дает катет на гипотенузу.

Теорема Пифагора

Любой прямоугольный треугольник подчиняется теореме Пифагора. Эта теорема гласит, что сумма квадратов катетов равна квадрату гипотенузы. Если принять, что катеты равны а и в, а гипотенуза – с, то запишем: а2+в2=с2. Теорема Пифагора применяется для решения всех геометрических задач, в которых фигурируют прямоугольные треугольники. Также она поможет начертить прямой угол при отсутствии необходимых инструментов. 

Высота и медиана

Прямоугольный треугольник характеризуется тем, что две его высоты совмещаются с катетами. Чтобы найти третью сторону, нужно найти сумму проекций катетов на гипотенузу и разделить на два. Если из вершины прямого угла провести медиану, то она окажется радиусом окружности, которую описали вокруг треугольника. Центром этой окружности будет середина гипотенузы.

Прямоугольный треугольник. Площадь и ее вычисление

Площадь прямоугольных треугольников вычисляется по любой формуле нахождения площади треугольника. Помимо этого, можно использовать еще одну формулу: S=а*в/2, которая гласит, что для нахождения площади нужно произведение длин катетов разделить на два.

Косинус, синус и тангенс прямоугольного треугольника

Косинусом острого угла именуют отношение катета, прилегающего к углу, к гипотенузе. Он всегда меньше, чем единица. Синус – это отношение катета, который лежит напротив угла, к гипотенузе. Тангенс – отношение катета, лежащего против угла, к катету, прилегающему к этому углу. Котангенсом называют отношение катета, прилегающего к углу, к катету, находящемуся напротив угла. Косинус, синус, тангенс и котангенс не являются зависимыми от размеров треугольника. На их значение влияет только градусная мера угла.

Решение треугольника

Чтобы вычислить значение катета, противолежащего углу, нужно умножить длину гипотенузы на синус этого угла или размер второго катета на тангенс угла. Для нахождения катета, прилежащего к углу, необходимо посчитать произведение гипотенузы на косинус угла.

Равнобедренный прямоугольный треугольник

Если треугольник имеет прямой угол и равные катеты, то его называют равнобедренным прямоугольным треугольником. Острые углы такого треугольника тоже равны - по 450.Медиана, биссектриса и высота, проведенные из прямого угла равнобедренного прямоугольного треугольника, совпадают.

www.syl.ru