По двум сторонам и углу между ними. Параметры треугольника. Найти сторону треугольника по углу и двум сторонам


Все формулы для треугольника

1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

Биссектриса прямого угла прямоугольного треугольника

 

L - биссектриса, отрезок ME , исходящий из прямого угла (90 град)

a, b - катеты прямоугольного треугольника

с - гипотенуза

α - угол прилежащий к гипотенузе

 

Формула длины биссектрисы через катеты, ( L):

Формула длины биссектрисы через катеты

 

Формула длины биссектрисы через гипотенузу и угол, ( L):

Формула длины биссектрисы через гипотенузу и угол

 

 

2. Найти по формулам длину биссектрисы из острого угла на катет:

Биссектриса из острого угла прямоугольного треугольника

 

L - биссектриса, отрезок ME , исходящий из острого угла

a, b - катеты прямоугольного треугольника

с - гипотенуза

α, β - углы прилежащие к гипотенузе

 

Формулы длины биссектрисы через катет и угол, (L):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

 

Формула длины биссектрисы через катет и гипотенузу, (L):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и гипотенузу

 

www-formula.ru

Стороны треугольника | Онлайн калькуляторы, расчеты и формулы на GELEOT.RU

Зная стороны треугольника, можно найти все остальные его параметры по выведенным для треугольника формулам, просто подставив их значения. Периметр треугольник будет представлять собой сумму всех его сторон, а площадь выводится по формуле Герона, как квадратный корень из произведения полупериметра на его разность с каждой стороной по очереди, и деленному на два. P=a+b+c S=√(p(p-a)(p-b)(p-c)/2)

Все углы в треугольнике, зная стороны, можно найти через теорему косинусов. (рис.75) cos⁡α=(b^2+c^2-a^2)/2bc

В произвольном треугольнике также есть три медианы m (делящие противоположную сторону пополам), три биссектрисы l (делящие угол пополам) и три высоты h (перпендикуляры из угла к стороне или ее проекции). Все их можно вычислить, имея в распоряжении значения трех сторон. Формула медианы, которая опущена на сторону c.(рис.75.1) m_c=√(2a^2+2b^2-c^2 )/2

Найти медиану, опущенную на сторону a или b, можно заменив необходимые стороны в формуле так, чтобы сторона, поделенная медианой пополам, была со знаком «–». m_a=√(2b^2+2c^2-a^2 )/2 m_b=√(2a^2+2c^2-b^2 )/2

Формула биссектрисы, которая выходит из угла γ и опущена на сторону с. (рис.75.2) l_c=√(ab(a+b+c)(a+b-c))/(a+b)

Чтобы найти биссектрисы, которые выходят из двух других углов, нужно преобразовать формулу аналогично формуле медианы, где противоположная сторона со знаком «–». l_b=√(ac(a+b+c)(a+c-b))/(a+c) l_a=√(bc(a+b+c)(b+c-a))/(b+c)

Формула высоты, которая опущена на сторону a, b или c видоизменяется таким образом, чтобы в знаменателе была нужная сторона.(рис.75.3) h_a=(2√(p(p-a)(p-b)(p-c) ))/a h_b=(2√(p(p-a)(p-b)(p-c) ))/b h_c=(2√(p(p-a)(p-b)(p-c) ))/c

Также в любом треугольнике можно провести среднюю линию, которая также как медиана обозначается буквой m, поэтому для их разделения, будем использовать заглавную M для средней линии. Средняя линия параллельна той стороне, которая выбрана основанием треугольника, и равна ее половине. Среди свойств средней линии можно отметить, что боковые стороны она делит на две равные части, поэтому если начертить все три средние линии в треугольнике, то получится еще один треугольник, подобный первому, в два раза меньше. (рис. 75.7) M_a=a/2 M_b=b/2 M_c=c/2

В каждый треугольник можно вписать окружность и описать ее вокруг него. Центр вписанной в треугольник окружности будет находиться на пересечении его биссектрис, а радиус будет опущен под прямым углом к любой стороне и его формула выводится также по Герону. (рис.75.5) r=√(((p-a)(p-b)(p-c))/p)

Центр описанной вокруг произвольного треугольника окружности находится на пересечении его медиатрисс (срединных перпендикуляров, радиус опущен в любую вершину или угол, и вычисляется по следующей формуле. (рис.75.6) R=abc/(4√(p(p-a)(p-b)(p-c)))

geleot.ru

Две стороны и угол треугольника

Зная две стороны в треугольнике и угол между ними, можно с помощью теоремы косинусов вычислить третью сторону треугольника. Для этого нужно извлечь квадратный корень из суммы квадратов известных сторон и разности с их удвоенным произведением на косинус угла между ними. (рис.76) a^2=b^2+c^2-2bc cos⁡α a=√(b^2+c^2-2bc cos⁡α )

Угол β или γ можно рассчитать через ту же теорему косинусов, зная две, образующие их стороны, при этом один из них – последний, проще найти, отняв два известных от 180 градусов. cos⁡β=(a^2+c^2-b^2)/2ac=(b^2+c^2-2bc cos⁡α+c^2-b^2)/(2c√(b^2+c^2-2bc cos⁡α ))=(2c^2-2bc cos⁡α)/(2c√(b^2+c^2-2bc cos⁡α ))=(c-b cos⁡α)/√(b^2+c^2-2bc cos⁡α ) cos⁡γ=(a^2+b^2-c^2)/2ab=(b^2+c^2-2bc cos⁡α+b^2-c^2)/(2b√(b^2+c^2-2bc cos⁡α ))=(b-c cos⁡α)/√(b^2+c^2-2bc cos⁡α )

Медиана треугольника рассчитывается по вполне однозначной формуле, тогда как если нужно найти медианы через две стороны и угол между ними, то требуются преобразования. m_a=√(2b^2+2c^2-a^2 )/2=√(2b^2+2c^2-b^2-c^2+2bc cos⁡α )/2=√(b^2+c^2+2bc cos⁡α )/2 m_b=√(2a^2+2c^2-b^2 )/2=√(2b^2+2c^2-4bc cos⁡α+2c^2-b^2 )/2=√(b^2+4c^2-4bc cos⁡α )/2 m_c=√(2a^2+2b^2-c^2 )/2=√(2b^2+2c^2-4bc cos⁡α+2b^2-c^2 )/2=√(4b^2+c^2-4bc cos⁡α )/2

Для расчета биссектрис в произвольном треугольнике также существуют стандартные формулы, из которых только одна может быть преобразована и упрощена для двух сторон и угла между ними. l_c=√(ab(a+b+c)(a+b-c))/(a+b) l_b=√(ac(a+b+c)(a+c-b))/(a+c) l_a=√(bc(a+b+c)(b+c-a))/(b+c)=√(bc((b-c)^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-b^2-c^2+2bc cos⁡α ) )/(b+c)=(bc√(2(1+cos⁡α ) ))/(b+c)

Чтобы найти высоту, нужно знать все три стороны в треугольнике. Подставив их в формулу так, чтобы сторона, на которую опущена искомая высота была в знаменателе, рассчитываются их величины. h_a=(2√(p(p-a)(p-b)(p-c) ))/a h_b=(2√(p(p-a)(p-b)(p-c) ))/b h_c=(2√(p(p-a)(p-b)(p-c) ))/c

Вычислить среднюю линию треугольника можно, зная лишь ту сторону, которой она параллельна, так как сторона будет в два раза больше. В случае с неизвестной стороной, можно подставить в формулу радикал,выведенный по теореме косинусов. M_a=a/2=√(b^2+c^2-2bc cos⁡α )/2 M_b=b/2 M_c=c/2

На пересечении биссектрис в треугольнике расположен центр окружности, которую можно в него вписать. Радиус такой окружности рассчитывается по следующей формуле(рис.75.5) r=√(((p-a)(p-b)(p-c))/p)

Центр описанной вокруг треугольника окружности в свою очередь расположен в точке пересечения медиатрисс, и его формула значительно видоизменена в сравнении с радиусом вписанной окружности. (рис.75.6) R=abc/(4√(p(p-a)(p-b)(p-c)))

geleot.ru

Два угла и сторона треугольника C

Для того чтобы рассчитать в треугольнике все возможные показатели, необходимо, как минимум, иметь данные о его сторонах. Зная два угла и сторону а, можно найти остальные две стороны и угол, построив высоту в таком треугольнике. (рис. 76.1) Высота разделит произвольный треугольник на два прямоугольных, в которых катетами будет высота и часть известной стороны x или y, а гипотенузами – неизвестные стороны a и b. Кроме того, что мы задаем известную сторону a, как сумму двух катетов x и y, тригонометрия полученных треугольников, определяет высоту с одной стороны как произведение y на тангенс β, а с другой стороны как произведение x на тангенс γ. Приравнивая эти выражения друг к другу, можно составить систему уравнений, из которых могут быть найдены части x и y, а затем неизвестные стороны первоначального треугольника a и b. {█([email protected] tan⁡β=x tan⁡γ )┤{█([email protected](tan⁡β+tan⁡γ )=a tan⁡γ )┤{█([email protected]=(a tan⁡γ)/(tan⁡β+tan⁡γ ))┤ b=x/cos⁡γ , c=y/cos⁡β h_a=y tan⁡β

Можно также найти сразу две другие высоты треугольника, опущенные на стороны b и c соответственно. (рис. 76.2) h_b=a sin⁡β h_c=a sin⁡γ

Третий угол можно найти, зная, что сумма всех углов в треугольнике равна 180 градусам. α=180°-β-γ

Теперь, зная все стороны, углы и высоты, можно найти все остальные параметры треугольника. Вычислить периметр можно, сложив все три стороны, а площадь – умножив половину любой стороны на опущенную на нее высоту. P=a+b+c S=(ah_a)/2

Если провести в треугольнике медианы, то каждая из них разделит сторону, на которую она опущена, на две равные части. Для того, чтобы вычислить медиану в треугольнике, необходимо знать все три стороны. Формула медианы заключается в том, чтобы сложить удвоенные квадраты двух нетронутых сторон, отнять квадрат стороны, на которую опущена медиана, извлечь из этого выражения квадратный корень и разделить его на два. (рис. 75.1) m_c=√(2a^2+2b^2-c^2 )/2 m_a=√(2b^2+2c^2-a^2 )/2 m_b=√(2a^2+2c^2-b^2 )/2

Чтобы найти биссектрисы треугольника, которые делят пополам его углы, также необходимо знать все три стороны треугольника. Формула биссектрисы выглядит немного сложнее, чем формула медианы, но достаточно проста в расчетах. (рис.75.2) l_c=√(ab(a+b+c)(a+b-c))/(a+b) l_b=√(ac(a+b+c)(a+c-b))/(a+c) l_a=√(bc(a+b+c)(b+c-a))/(b+c)

Средняя линия треугольника – это прямая, проведенная параллельно одной из его сторон. Ее особенность заключается в том, что она делит стороны на которые опирается на две равные части, и сама равна половине стороны, ей параллельной. (рис.75.7) M_a=a/2 M_b=b/2 M_c=c/2

Также в произвольном треугольнике через стороны можно найти радиус окружности, которую можно вписать в треугольник или описать около него. Радиус вписанной окружности будет начинаться в точке пересечения биссектрис треугольника и опускаться на любую из сторон под прямым углом. Радиус описанной окружности начинается в точке пересечения медиатрисс треугольника и заканчивается в любой из его вершин. (рис. 75.5, 75.6) r=√(((p-a)(p-b)(p-c))/p) R=abc/(4√(p(p-a)(p-b)(p-c)))

geleot.ru

Решение прямоугольного треугольника | Формулы и расчеты онлайн

Решение прямоугольного треугольника по двум сторонам

Если даны две стороны прямоугольного треугольника, то третья сторона может быть вычислена по теореме Пифагора. Острые углы определяются по формулам тригонометрических функций острого угла — Синус угла — sin(A), Косинус угла — cos(A), Тангенс угла — tg(A), Котангенс угла — ctg(A), Секанс угла — sec(A), Косеканс угла — cosec(A).

Решение прямоугольного треугольника

Решение прямоугольного треугольника

Если известны катет a и гипотенуза c

Второй катет b определится по теореме Пифагора:

\[ b = \sqrt{c^2 - a^2} \]

Угол A определится по формуле синуса:

\[ \sin(A) = \frac{a}{c} \]

Поскольку сумма всех углов треугольника равна 180° то второй острый угол определится так:

\[ B = 180° - 90° - A \]

Вычислить, найти решение прямоугольного треугольника по двум сторонам (катет и гипотенуза)

Если известны катеты a и b

Гипотенуза с определится по теореме Пифагора:

\[ c = \sqrt{a^2 + b^2} \]

Угол A определится по формуле тангенса:

\[ \tg(A) = \frac{a}{b} \]

Поскольку сумма всех углов треугольника равна 180° то второй острый угол определится так:

\[ B = 180° - 90° - A \]

Вычислить, найти решение прямоугольного треугольника по двум сторонам (катет и катет)

Решение прямоугольного треугольника по стороне и острому углу

Если дан острый угол A, то B найдется по формуле:

\[ B = 90° - A \]

Стороны можно найти по следующим формулам:

\[ a = c · \sin(A) \]

\[ b = c · \cos(A) \]

\[ a = b · \tg(A) \]

\[ b = c · \sin(B) \]

\[ a = c · \cos(B) \]

\[ b = a · \tg(B) \]

\[ c = \frac{a}{\sin(A)} \]

\[ c = \frac{b}{\cos(A)} \]

\[ b = \frac{a}{\tg(A)} \]

Вычислить, найти решение прямоугольного треугольника если известны катет a и противолежащий угол A

Здесь все углы мы найдем по формуле (7). Гипотенузу по формуле (14) и второй катет по формуле (16).

В помощь студенту

Решение прямоугольного треугольника
стр. 237

www.fxyz.ru

По двум сторонам и углу между ними. Параметры треугольника

Вы ввели следующие параметры треугольника
Введенное выражение
Рассчитанный треугольник и его свойства (в условных единицах)

 

Представляем небольшие калькуляторы основанные на универсальном решателе треугольников. Не все  могут отыскать этот калькулятор, поэтому с помощью частных решений , мы предоставляем возможность узнавать параметры треугольника по двум сторонам и углу между ними.

Итак, если у нас есть треугольник вида

и  известны строны a, b и угол между ними, то однозначно определяется  неизвестная третья сторона, по формуле

Далее, можем по этой же формуле  находить оставшиеся неизвестными два угла. Например для угла в точке  A  формула будет такой:

 

И зная все эти параметры, совсем просто вычисляются и высоты, и медианы  и площадь треугольника.

Бот, по заданным трем параметрам, выведет все рассчитанные значения  в одной таблице.

Примеры решения:

Длина одной стороны 8 единиц, другой 14 единиц. Угол между ними 55 градусов.

Определить все возможные параметры треугольника.

В геометрии желательно или мысленно или на бумаге прорировать Ваш исходный треугольник, что бы Вы понимали что где находится и что надо найти. В противном случае, непонимание условия задачи влечет за собой неспособность её решить. 

Как Вы обозначите стороны на своем рисунке неважно. Поэтому и поля ввода имеют свободный вид, то есть можно написать a=8 или с=8. Ввод же угла   прост и вводится

 как численное значение, так как уже понятно, что он находится МЕЖДУ двумя УЖЕ заданными сторонами.

Вы ввели следующие параметры треугольника
Рассчитанный треугольник и его свойства (в условных единицах)

A = 35.150232566068  B = 89.849767433932  C = 55  S = 45.872514480183  a = 8  b = 14  c = 11.468168042777  ha = 11.468128620045  hb = 6.5532163543118  hc = 7.9999724993696  ma = 12.155634048814  mb = 6.9827959392127  mc = 9.8549622239589  p = 16.734084021388 

Еще один пример

Решим классическую задачу сторона a=4 сторона b=3 а угол межд ними 90 градусов

так и запишем. Получим ответ.

Вы ввели следующие параметры треугольника
Рассчитанный треугольник и его свойства (в условных единицах)

A = 53.130102354156  B = 36.869897645844  C = 90  S = 6  a = 4  b = 3  c = 5  ha = 3  hb = 4  hc = 2.4  ma = 3.605551275464  mb = 4.2720018726587  mc = 2.5  p = 6 

Получили что это прямоугольный треугольник.

И напоследок.

Кто попал впервые на эту страницу смогут сразу не понять, что за обозначения означают те, или иные символы.

Ниже представлен список, для  соответствия.

Сторона a

Сторона b

Сторона c

Полупериметр p

Угол А

Угол B

Угол C

Площадь треугольника S

Высота ha на сторону a

Высота hb на сторону b

Высота hc на сторону c

Медиана ma на сторону a

Медиана mb на сторону b

Медиана mc на сторону c

Координаты вершин (xa,ya) (xb,yb) (xc,yc)

 

  • По стороне и двум углам. Параметры треугольника. >>

www.abakbot.ru

Как найти сторону треугольника, если две другие известны

В геометрии часто бывают задачи, связанные со сторонами треугольников. Например, часто необходимо найти сторону треугольника, если две другие известны.

Треугольники бывают равнобедренными, равносторонними и неравносторонними. Из всего разнообразия, для первого примера выберем прямоугольный (в таком треугольнике один из углов равен 90°, прилегающие к нему стороны называются катетами, а третья — гипотенузой).

Быстрая навигация по статье

Длина сторон прямоугольного треугольника

Решение задачи следует из теоремы великого математика Пифагора. В ней говорится, что сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы: a²+b²=c²

  • Находим квадрат длины катета a;
  • Находим квадрат катета b;
  • Складываем их между собой;
  • Из полученного результата извлекаем корень второй степени. 

Пример: a=4, b=3, c=?

  • a²=4²=16;
  • b² =3²=9;
  • 16+9=25;
  • √25=5. То есть, длина гипотенузы данного треугольника равна 5. 

Если же у треугольника нет прямого угла, то длин двух сторон недостаточно. Для этого необходим третий параметр: это может быть угол, высота площадь треугольника, радиус вписанной в него окружности и т.д..

Если известен периметр

В этом случае задача ещё проще. Периметр (P) представляет собой сумму всех сторон треугольника: P=a+b+c. Таким образом, решив простое математическое уравнение получаем результат.

Пример: P=18, a=7, b=6, c=?

1) Решаем уравнение, перенося все известные параметры в одну сторону от знака равенства:

P=a+b+c

c=P-a-b

2) Подставляем вместо них значения и вычисляем третью сторону:

c=18-7-6=5, итого: третья сторона треугольника равна 5.

Если известен угол

Для вычисления третьей стороны треугольника по углу и двум другим сторонам, решение сводится к вычислению тригонометрического уравнения. Зная взаимосвязь сторон треугольника и синуса угла, несложно вычислить третью сторону. Для этого нужно возвести обе стороны в квадрат и сложить их результаты вместе. Затем вычесть из получившегося произведение сторон, умноженное на косинус угла: C=√(a²+b²-a*b*cosα)

Если известна площадь

В этом случае одной формулой не обойтись.

1) Сначала вычисляем sin γ, выразив его из формулы площади треугольника:

S=a*b* sin γ/2

sin γ= 2S/(a*b)

2) По следующей формуле вычисляем косинус того же угла:

sin² α + cos² α=1

cos α=√(1 — sin² α)=√(1- (2S/(a*b))²)

3) И снова воспользуемся теоремой синусов:

C=√((a²+b²)-a*b*cosα)

C=√((a²+b²)-a*b*√(1- (S/(a*b))²))

Подставив в это уравнение значения переменных, получим ответ задачи.

Поделитесь этой статьёй с друзьями в соц. сетях:

podskajem.com