Перевод чисел из восьмеричной системы в двоичную и шестнадцатеричную. Перевод из восьмеричной в двоичную


Перевод чисел из одной системы счисления в другую онлайн

 

 Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число 6 3 7 2
позиция 3 2 1 0

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·103+3·102+7·101+2·100.

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число 1 2 8 7 . 9 2 3
позиция 3 2 1 0   -1 -2 -3

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·103 +2·102 +8·101+7·100+9·10-1+2·10-2+3·10-3.

В общем случае формулу можно представить в следующем виде:

Цn·sn+Цn-1·sn-1+...+Ц1·s1+Ц0·s0+Д-1·s-1+Д-2·s-2+...+Д-k·s-k

(1)

где Цn-целое число в позиции n, Д-k- дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

 

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1·26+0·25+1·24+1·23+1·22 +0·21+1·20+0·2-1+0·2-2+1·2-3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C- на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

159 2            
158 79 2          
1 78 39 2        
  1 38 19 2      
    1 18 9 2    
      1 8 4 2  
        1 4 2 2
          0 2 1
            0  

Рис. 1

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

15910=100111112.

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

615 8    
608 76 8  
7 72 9 8
  4 8 1
    1  

Рис. 2

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

61510=11478.

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16    
19664 1229 16  
9 1216 76 16
  13 64 4
    12  

Рис. 3

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

    0.214
  x 2
0   0.428
  x 2
0   0.856
  x 2
1   0.712
  x 2
1   0.424
  x 2
0   0.848
  x 2
1   0.696
  x 2
1   0.392

Рис. 4

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011.

Следовательно можно записать:

0.21410=0.00110112.

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

    0.125
  x 2
0   0.25
  x 2
0   0.5
  x 2
1   0.0

Рис. 5

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.12510=0.0012.

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

    0.214
  x 16
3   0.424
  x 16
6   0.784
  x 16
12   0.544
  x 16
8   0.704
  x 16
11   0.264
  x 16
4   0.224

Рис. 6

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.21410=0.36C8B416.

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

    0.512
  x 8
4   0.096
  x 8
0   0.768
  x 8
6   0.144
  x 8
1   0.152
  x 8
1   0.216
  x 8
1   0.728

Рис. 7

Получили:

0.51210=0.4061118.

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.12510=10011111.0012.

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

19673.21410=4CD9.36C8B416.

matworld.ru

Как перевести число из двоичной системы в восьмеричную и шестнадцатеричную

Перевод чисел из двоичной системы счисления в восьмеричную, шестнадцатеричную или четвертичную и наоборот часто требуется для решения задач по теме Системы счисления. Чтобы перевести число из одной системы в другую, нужно использовать таблицу перевода чисел. А также можно воспользоваться онлайн калькулятором для перевода чисел из одной системы счисления в другую.

Таблица перевода чисел

Десятичная СС Двоичная СС Четвертичная СС Восьмеричная СС Шестнадцатеричная СС
1 1 1 1 1
2 10 2 2 2
3 11 3 3 3
4 100 10 4 4
5 101 11 5 5
6 110 12 6 6
7 111 13 7 7
8 1000 20 10 8
9 1001 21 11 9
10 1010 22 12 A
11 1011 23 13 B
12 1100 30 14 C
13 1101 31 15 D
14 1110 32 16 E
15 1111 33 17 F
16 10000 100 20 10

Как перевести число из двоичной системы счисления

Чтобы перевести число из двоичной системы счисления в четвертичную, восьмеричную или шестнадцатеричную систему, нужно воспользоваться алгоритмом перевода:

  1. Разбить двоичное число справа налево на группы по 2 (для четвертичной СС), 3 (для восьмеричной СС) или 4 (для шестнадцатеричной СС) цифры. Если слева не будет хватать цифр для полной группы, нужно дописать необходимое количество незначащих нулей.
  2. Заменить каждую группу цифр на ее аналог в соответствующей системе счисления.

Пример 1:

Перевести число 1111001102 из двоичной системы в четвертичную.

Решение:

Разбиваем число на группы по 2 цифры справа налево и заменяем каждую группу на аналог в четвертичной системе счисления из таблицы:

1111001102 = 01 11 10 01 10 = 132124

Пример 2:

Перевести число 1111001102 из двоичной системы в восьмеричную.

Решение:

Разбиваем число на группы по 3 цифры справа налево и заменяем каждую группу на аналог в восьмеричной системе счисления из таблицы:

1111001102 = 111 100 110 = 7468

Пример 3:

Перевести число 1111001102 из двоичной системы в шестнадцатеричную.

Решение:

Разбиваем число на группы по 4 цифры справа налево и заменяем каждую группу на аналог в шестнадцатеричной системе счисления из таблицы:

1111001102 = 0001 1110 0110 = 1E616

Как перевести число в двоичную систему счисления

Чтобы перевести число из четвертичной, восьмеричной или шестнадцатеричной системы счисления в двоичную, нужно воспользоваться алгоритмом перевода:

  1. Заменить каждую цифру на двоичный аналог, состоящий из 2 (для четвертичной), 3 (для восьмеричной) или 4 (для шестнадцатеричной) цифр. Если нужно, число дополняется нулями слева.
  2. Вычеркнуть из числа незначащие нули.

Пример 4:

Перевести число 1203234 из четвертичной системы в двоичную.

Решение:

Выполняем замену каждой цифры на группу из 2 цифр в двоичной системе счисления:

1203234 = 01 10 00 11 10 11 = 110001110112

Пример 5:

Перевести число 264750308 из восьмеричной системы в двоичную.

Решение:

Выполняем замену каждой цифры на группу из 3 цифр в двоичной системе счисления:

264750308 = 010 110 100 111 101 000 011 000 = 101101001111010000110002

Пример 6:

Перевести число 2AC0F7416 из шестнадцатеричной системы в двоичную.

Решение:

Выполняем замену каждой цифры на группу из 4 цифр в двоичной системе счисления:

2AC0F7416 = 0010 1010 1100 0000 1111 0111 0100 = 101010110000001111011101002

worksbase.ru

Перевод чисел из восьмеричной системы счисления в двоичную и обратно

Таблица соответствия (двоично-восьмеричныйкод):

Х8У2

0000

1001

2010

3011

4100

5101

6110

7111

Для того чтобы перевести число из восьмеричной системы счис-

ления в двоичную, каждую восьмеричную цифру нужно заменитьтриадой двоичных цифр.

Пример:

−275,68 = −010 111 101, 1102 = −10111101,112

(Полученный результат подтверждает пример из раздела “Перевод смешанных десятичных чисел в другие системы счисления”.)

Для перевода числа из двоичной системы счисления в восьмерич-

ную, его нужно разбить натриады вправо и влево от запятой, дополняя при этом в случае необходимости крайние левую и правую триады нулями до полных.

Пример:

1010,01112 = 001 010, 011 1002 =12,348

28

Перевод чисел из шестнадцатеричной системы счисления в двоичную и обратно

Таблица соответствия (двоично-шестнадцатеричныйкод):

00000

10001

20010

30011

40100

50101

60110

70111

81000

91001

A1010

B1011

C1100

D1101

E1110

F1111

Для того чтобы перевести число из шестнадцатеричной систе-

мы счисления в двоичную, каждую шестнадцатеричную цифру нужно заменитьтетрадой двоичных цифр.

Пример:

− BD,5F16 = −1011 1101, 0101 11112

29

Сравните дробную часть полученного двоичного числа с результа-

том перевода дробного десятичного числа 0,3710 в двоичную систему счисления. Разница в последнем знаке определяется округлением при переводе этого числа как в двоичную(0,3710 ≈ 0,0101111...2 ), так и в ше-

стнадцатеричную (0,3710 ≈ 0,5F...16 ) системы счисления.

Для перевода числа из двоичной системы счисления в шестна-

дцатеричную, его нужно разбить натетрады вправо и влево от запятой, дополняя при этом в случае необходимости крайние левую и правую тетрады нулями до полных.

Примеры:

1) 10111101,112 =1011 1101, 11002 = BD,C16

(см. перевод целого десятичного числа 189 в двоичную и шестнадцатеричную системы счисления и дробного десятичного числа 0,75 в двоичную и шестнадцатеричную системы счисления)

2) 1010,01112 =1010,

01112 = A,716

Но с другой стороны

1010,01112 =12,348 (см. перевод чисел из

двоичной системы счисления в восьмеричную), таким образом

A,716 =12,348 и переход от шестнадцатеричной системы счисления к восьмеричной и обратноможно осуществлять в два этапа, через двоичную систему счисления, используя двоично-восьмеричный и двоичношестнадцатеричный код.

30

Следует отметить, что при рассмотрении умножения двоичных, восьмеричных и шестнадцатеричных чисел (см. выше) в примерах использовались одни и те же числа:

11011,12 =33,48 =1B,816 ; 11,012 =3,28 =3,416 .

В этом можно легко убедиться, используя двоично-восьмеричныйидвоично-шестнадцатеричныйкод. Таким же образом можно убедиться и в том, что результаты умножения одинаковы:

1011001,0112 =131,38 =59,616 .

31

studfiles.net

Перевод чисел из восьмеричной системы в двоичную и шестнадцатеричную

Алгоритм перевода чисел из одной системы счисления в другую наиболее прост в том случае, когда одно из оснований этих систем является степенью другой, как, например, в случае двоичной и восьмеричной систем счисления. В таком случае алгоритм перевода состоит в простой замене чисел одной системы на равные им числа другой системы счисления (в случае положительных чисел). На начальном этапе удобно и полезно воспользоваться таблицей соответствия, приведенной в Приложении.

Пусть требуется перевести восьмеричное число 24738 в двоичное число. Воспользовавшись Таблицей соответствия из Приложения, получим:

24738 = 101001110112,

поскольку 28 = 0102, 48 = 1002, 78 = 1112... Следует помнить, что восьмеричное число кодируется тремя битами, и выписывать триады нужно полностью. Исключением из этого правила может служить только старшая триада, в которой старший бит (СБ) равен нулю.

Сложнее обстоит дело при переводе чисел из восьмеричной системы в шестнадцатеричную. Обычно вначале переводят восьмеричное число в двоичное, а затем уже в шестнадцатеричное по алгоритму, описанному в разделе Перевод чисел из двоичной системы в восьмеричную и шестнадцатеричную. Для рассмотренного выше примера имеем:

24738 = 101001110112 = 0101 0011 10112 = 53B16

Перевод чисел из шестнадцатеричной системы в двоичную и восьмеричную

Алгоритм перевода чисел из шестнадцатеричной системы счисления двоичную крайне прост. Необходимо только заменить каждую цифру шестнадцатеричного числа ее эквивалентом в двоичной системе счисления (в случае положительных чисел). Как и в предыдущих параграфах, удобно и полезно воспользоваться таблицей соответствия, приведенной в Приложении. Отметим только, что каждое шестнадцатеричное число следует заменять двоичным, дополняя его до 4 разрядов (в сторону старших разрядов).

Пусть требуется перевести шестнадцатеричное число F116 в двоичное число. Воспользовавшись Таблицей соответствия из Приложения, получим:

F116 = 111100012,

поскольку F16 = 11112, 116 = 00012. Этот пример иллюстирует тот факт, что следует дополнять младшие разряды до 4 разряда в двоичном числе. Естественно, дополнять старший разряд двоичного числа до 4 старших битов нулями не имеет смысла, другими словами пишут

1F16 = 111112, а не 000111112

Обычно при переводе чисел из шестнадцатеричной в восьмеричную систему счисления вначале шестнадцатеричное число переводят в двоичное, затем разбивают его на триады, начиная с младшего бита, а потом заменяют триады соответствующими им эквивалентами в восьмеричной системе (аналогично алгоритму, описанному в разделе Перевод чисел из двоичной системы в восьмеричную и шестнадцатеричную. Для рассмотренных выше примеров имеем:

1F16 = 111112 = 011 1112 = 378

F116 = 111100012 = 011 110 0012 = 3618

Непосредственное преобразование чисел из шестнадцатеричной системы счисления в восьмеричную требует выполнения арифметических действий в этой системе счисления. Об этом речь пойдет позже, в IV главе нашего курса. Отмечу только, что программная реализация вышеприведенного алгоритма проще и надежнее, поскольку при выполнениях операций деления неизбежно возникают дробные числа и переполнения разрядной сетки, необходимость округления, и, как следствие, потеря точности, не говоря уже о скорости выполнения компьютером такого типа алгоритмов.

studfiles.net

Системы счисления - Перевод чисел из одной системы счисления в другую

Перевод чисел в десятичную систему счисления

Перевод из двоичной системы в десятичную

Преобразуем двоичное число 1001011 из первого примера

Пример Перевести число 11010101 из двоичной системы в десятичную.
Преобразуем число:

110101012= 1 * 27 + 1 * 26 + 0 * 25 + 1 * 24 + 0 * 23 + 1 * 22 + 0 * 21 + 1 * 20=128+64+0+16+0+4+0+1=21310

Перевод из восьмеричной системы в десятичную

Преобразуем восьмеричное число 572.

Пример Перевести число 572 из восьмеричной системы в десятичную.
Преобразуем число:

5728=5 * 82 + 7 * 81 + 2 * 80=320+56+2=37810

Перевод из шестнадцатеричной системы в десятичную

Числа в шестнадцатеричной системе состоят из цифр 0-9 и букв A, B, C, D, E, F, таблица соответствия:

десятичная 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
шестнадцатеричная 1 2 3 4 5 6 7 8 9 A B C D E F

Преобразуем шестнадцатеричное число A5C.

Пример Перевести число A5C из шестнадцатеричной системы в десятичную.
Преобразуем число:

A5C16= 10 * 162 + 5 * 161 + 12 * 160 =2560+80+12=265210

calcs.su


Смотрите также