Формулы для пересчета концентраций растворов. Расчет концентрации


Примеры расчета концентрации растворов

1. Сколько граммов гидроксида натрия потребуется для приготовления 2 л 20%-ного раствора?

Решение. Согласно таблице относительных плотностей, плотность 20%-ного раствора гидроксида натрия – 1,225. Масса 2 л раствора равна:

m = V ·ρ = 2000 · 1,225 = 2450 г.

В 100 г 20%-ного р-ра – 20 г NaOH.

В 2450 г 20%-ного р-ра – x NaOH.

x = 490 г NaOH.

2. Сколько воды необходимо прибавить к 200 мл 68%-ного раствора азотной кислоты (относительная плотность 1,4), чтобы получить 10%-ный раствор кислоты?

Решение. Согласно таблице относительных плотностей 68%-ная азотная кислота имеет плотность 1,4. Масса HNO3 в 200 мл 68%-ного раствора:

В 100 г р-ра – 68 г HNO3.

В 200 · 1,4 г р-ра – x HNO3

x = 190,4 г.

Эта же масса HNO3составит 10% массы разбавленного раствора. Масса 10%-ного раствора HNO3:

В 100 г 10%-ного р-ра – 10 г HNO3.

В x г 10%-ного р-ра – 190,4 г HNO3

x = 1904 г.

Для разбавления исходного раствора кислоты необходимо 1624 г или 1624 мл воды (1904 – 280).

3. Сколько миллилитров 96%-ной серной кислоты (относительная плотность 1,84) необходимо взять для приготовления 2 л 0,5 н раствора?

Решение. Эквивалентная масса серной кислоты равна 49 г. В 1 л 0,5 н раствора содержится 24,5 г, а в 2 л раствора – 49 г серной кислоты.

Масса 96%-ного раствора серной кислоты, в котором содержится 49 г сульфата водорода:

В 100 г р-ра – 96 г h3SO4.

В x г р-ра – 49 г h3SO4.

x = 51,04 г.

Объем 51,04 г 96%-ного раствора h3SO4:

4. Рассчитайте объем 40%-ной фосфорной кислоты (ρ = 1,25 г/см3), который потребуется для приготовления 300 мл раствора с массовой долей кислоты 5% (ρ = 1,03 г/см3)?

Решение. Вычислим массу 300 мл раствора с массовой долей фосфорной кислоты 0,05 (5%): m = V · ρ:

mр-ра= 1,03 · 300 = 309 г.

Определим массу фосфорной кислоты, необходимую для приготовления 300 мл такого раствора: W = m в –ва / m p -ра

m в - ва= ω (h4PO4) · mp -ра,

m в - ва = 0,05 · 309 = 15,45 г.

Находим, какая масса раствора 40%-ной фосфорной кислоты (m в - ва = 0,4) содержит 15,45 г Н3РО4: m = m в - ва / ω:

m р-ра= 15,45 / 0,4 = 38,63 г.

Рассчитаем V1, занимаемый 38,63 г 40%-ной фосфорной кислоты:

V = mр / ρ,

V((h4PO4) = 38,63 / 1,25 = 30,9 мл.

5. К 250 г 18%-ного раствора LiCl добавили 6 г этой же соли. Какова стала массовая доля соли в растворе?

Решение. Вычислим массу LiCl, содержащуюся в исходном растворе:

ω = m в-ва / mp-ра,

mp = 250 · 0,18 = 45 г.

После добавления 6 г масса LiCl стала:

m(LiCl) = 45 + 6 = 51 г.

Масса раствора тоже изменилась:

m = 250 + 6 = 256 г.

Находим массовую долю LiCl в полученном растворе:

ω = m(LiCl) / mp-ра,

ω = 51 / 256 ·100%= 20%.

6. Определите молярную концентрацию раствора, полученного при растворении сульфата натрия массой 42,6 г в воде массой 300 г, если плотность раствора равна 1,12 г/мл.

Решение. Определим массу полученного раствора:

mp-ра = m(Na2SO4) + m(h3O) = 42,6 + 300 = 342,6 г.

Рассчитаем объем раствора:

V = m/ ρ

V = 342,6 / 1,12 = 306 мл = 0,306 л.

Количество вещества Na2SO4 равно:

v(Na2SO4) = m(Na2SO4) / M(Na2SO4).

v(Na2SO4) = 42,6 / 142 = 0,3 моль.

Определяем молярную концентрацию раствора:

См = v(Na2SO4) / Vр-ра.

См = 0,3 / 0,306 = 0,98 моль / литр.

studfiles.net

Расчет концентраций растворов (М.В.Плосконос)

УДК 541.8 ББК24.1 Л 39

Плосконос М.В. Расчёт концентраций растворов: Учеб­но-методическоепособие. - Астрахань: ГОУ ВПО АГМА,2009.-42с.

Основная цель данного пособия - сформировать общие представления о том, что такое растворы, из каких компонентов они состоят и как их класси­ фицируют, обеспечить понимание значения растворов в медицинской практи­ ке, сформировать умения по расчёту количества вещества для приготовления растворов различной концентрации и расчётные умения по определению кон­ центрации растворов. В пособии приведены примеры с детальным разбором решения типовых задач, а также задачи для самостоятельного решения, кото­ рые снабжены ответами. В приложении приведены таблицы, содержащие дан­ ные, необходимые для решения задач.

Пособие предназначено для студентов лечебного, педиатрического, стома­ тологического, медико-профилактическоюи фармацевтического факультетов медицинских вузов. Типы и содержание задач соответствуют действующим в настоящее время программам по общей химии для медицинских вузов. Данное пособие может помочь в процессе подготовки к экзамену по общей химии. Пособие может быть использовано также студентами и преподавателями био­ логических специальностей немедицинских вузов, а также медучилищ и кол­ леджей.

Рецензенты;

Зав. кафедрой аналитической и физической химии Астраханского гос. университета,

доктор химических наук, проф. Н.М.Алыков Зав. кафедрой фармацевтической химии

Астраханской государственной медицинской академии кандидат химических наук, доцент О.Л.Титова

Печатается по решению редакционно-издательскогосовета ГОУ ВПО Астраханской государственной медицинской академии.

©М.В. Плосконос

©ГОУ ВПО Астраханская государственная медицинская академия

ОБЩИЕ ПРЕДСТАВЛЕНИЯ О РАСТВОРАХ

Растворы - гомогенные равновесные системы, состоящие из растворителя, растворённого вещества и продуктов их взаимодействия.

Вещества, составляющие раствор, называются ком­ понентами раствора. Обычно растворителем считают тот компонент, который после растворения не меняет своего агрегатного состояния (например, сахар в воде) или тот которого больше (спирт и вода). В растворах электролитов вне зависимости от соотношения компонентов электроли­ ты рассматриваются как растворённые вещества (напри­ мер,96%-ныйр-рh3SO4 в воде).

К лассификация растворов

По агрегатному состоянию растворы делятся:

газообразные

жидкие

твёрдые

(воздух)

(водные р-ры)

(ставы)

Для медиков наибольший интерес представляют жидкие водные растворы.

studfiles.net

Формулы для пересчета концентраций растворов

В приводимой ниже таблице приняты следующие обозначения:

М — мольная масса растворенного вещества, г/моль; Э — эквивалентная масса растворенного вещества, г/моль; р — плотность раствора, г/мл.

* Дли жидкостей может применяться величина Pv, % (об.) —число миллилитров растворенной жидкости в 100 мл раствора.

РАСЧЕТНЫЕ ФОРМУЛЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ПРИГОТОВЛЕНИЯ РАСТВОРОВ

Для приготовления определенного количества раствора какого-либо вещества заданной концентрации исходят из следующих данных: а) из количества чистого вещества и растворителя; б) из количества раствора данного вещества с более высокой концентрацией, чем заданная, и количества чистого растворителя или в) из количества двух растворов того же вещества, один из которых имеет концентрацию больше нужной, а другой — меньше.

Растворение вещества в воде

Пусть требуется приготовить А граммов раствора концентрации P [в % (масс.) ]. Тогда:

(I) (2)

где х— необходимая масса растворяемого вещества, г; b—необходимая масса воды, г.

Если нужно приготовить определенный объем V раствора (в мл) концентрации Р, находят по таблицам плотность р (в г/см3) раствора данного вещества требуемой концентрации. Поскольку А = Vp, формула (1) будет иметь вид:

(3)

В тех случаях, когда растворяемое вещество представляет собой кристаллогидрат, т. е. содержит кристаллизационную воду, для расчета необходимого его количества используют формулу:

(4) (5)

где х— необходимая масса кристаллогидрата, г; M1—мольная масса кристаллогидрата; М2—моль-мая масса вещества без кристаллизационной воды; b — необходимая масса воды, г.

Если нужно приготовить раствор объемом V (в мл) заданной нормальности N, вычисляют значение эквивалентной массы Э растворяемого вещества, после чего находят необходимую его навеску (в г) по формуле:

(6)

При приготовлении раствора заданной молярной концентрации применяют аналогичную формулу:

(7)

где М — молярная концентрация раствора; Мв — мольная масса растворяемого вещества; V — заданный объем раствора, мл.

Разбавление раствора водой

Пусть требуется приготовить раствор концентрации Р2 из имеющегося раствора с более высокой концентрацией Р1. Обозначим массу раствора до разбавления А1, а массу раствора после разбавления— А2. Тогда массу воды b (в г), необходимую для разбавления, находят по формуле (8) или (9) в зависимости от того, задано ли значение А\ или А2.

(8)

(9) (10)

В тех случаях, когда известна не масса, а объем раствора, необходимо по таблицам найти плотности растворов данного вещества исходной и конечной концентраций — p1 и р2 соответственно. Тогда, если нужно приготовить раствор объемом V2 (в мл) концентрации Р2 [в % (масс.)], а концентрация исходного раствора равна P1 [(в % (масс.)], то объем исходного раствора вычисляется по формуле:

(11)

Объем воды (в мл) для разбавления: b = V2 - V1

Смешивание двух растворов различной концентрации

Пусть требуется приготовить раствор заданной концентрации из двух растворов того же вещества, один из которых имеет концентрацию больше нужной, а другой — меньше. Чтобы определить, в каких пропорциях следует смешивать растворы, пользуются «правилом креста», которое наглядно показано на следующем примере:

Смешиваемые растворы можно измерять в объемных или массовых частях в зависимости от того, в объемных или массовых процентах выражают концентрацию растворов.

«Правило креста» можно применять и в случаях разбавления раствора чистым растворителем. При этом концентрацию вещества в чистом растворителе считают равной нулю:

Для получения более концентрированного раствора растворением в нем дополнительного количества компонента твердое вещество условно считают раствором с концентрацией 100%:

К оглавлению

 

 

см. также

 

 

www.himikatus.ru

концентрация, массовая доля. Определение, расчет и рекомендации

Массовая концентрация раствора является одним из распространенных понятий в современной химии. В статье мы выявим особенности растворов, их виды, применение. Отметим некоторые примеры расчета разных видов концентраций.

концентрация массовая

Особенности растворов

Раствор - это однородная система, имеющая переменный состав. Из двух компонентов раствора один всегда выступает в качестве среды. Именно в ней будут растворяться структурные фрагменты других веществ. Ее называют растворителем, внутри которого и располагаются молекулы растворенного вещества.

Если смешивается два газообразных вещества, то в таком случае не выделяют растворителя. Для каждой конкретной ситуации всегда проводятся специальные расчеты.

Получение однородных систем

Для получения однородных растворов необходимо дробление растворенных веществ до структурных единиц. Только в таком случае системы будут истинными. При раздроблении до небольших капелек, песчинок, которые будут распределяться в среде, получают коллоидные растворы, эмульсии, суспензии.

концентрация массовых долей

Применение растворов

Кстати, в строительстве смесь песка, цемента, воды тоже называют раствором, но с химической точки зрения он представляет собой суспензию. Практическое значение растворов можно объяснить по разным причинам.

Химические реакции в жидких растворах происходят в объеме растворителя. Это делает их доступными для реакции без любого дополнительного действия на систему. В смеси, содержащей твердые частицы, невозможно провести реакцию в полном объеме. Чтобы ускорить процесс, потребуется соприкосновение частиц в некоторых точках. Для повышения скорости реакции перетирают кристаллы в ступке, затем их прессуют. Но не сразу можно достигнуть полноты протекания процесса.

В растворе же протекает процесс иначе. Молекулы движутся свободно, при их столкновениях происходят химические превращения. Энергия, которая начинает выделяться в таком взаимодействии, аккумулируется растворителем, система практически не разогревается.

массовая концентрация раствора

Физические свойства и концентрация растворов

Массовая доля вещества позволяет определять количественное соотношение растворенного вещества и растворителя, взятое для их приготовления. Металлические сплавы, кстати, тоже являются растворами, но твердыми, характеризующимися определенными физическими параметрами.

Растворы обладают способностью менять силы действия растворенного компонента. Это делает их востребованными в сельском хозяйстве, медицине. Например, раствор марганцовки (перманганата калия) используют для обработки ссадин и ран в средней концентрации. Но практическое значение имеет и его незначительная концентрация. Так, массовая доля вещества 2-3% придает раствору слабо-розовый цвет, востребованный для промывания желудка.

Темные фиолетовые кристаллы перманганата калия не применяют в медицинских целях, поскольку они обладают сильными окислительными свойствами. Вообще, интенсивность окраски напрямую связана с тем, какова его концентрация. Массовая доля вещества позволяет регулировать токсичность готового раствора.

молярная массовая концентрация

Массовая доля

Как вычисляется подобная концентрация? Массовая доля вещества характеризуется отношением массы вещества к массе раствора, взятого в процентах. На их органолептические свойства оказывает влияние не только то, что будет растворяться, но и количественный показатель. Например, для слабого раствора поваренной соли почти не характерен привкус, а при больших концентрациях он проявляется в разной степени.

Как на практике определяется концентрация? Массовая доля вещества в растворе рассматривается в школьном курсе неорганической химии. Задачи на ее определение включены в тестовые задания для выпускников 9 класса.

Приведем пример задания, в котором используется концентрация.

Массовая доля поваренной соли 25%. Масса раствора 250 граммов. Определите массу воды, содержащейся в нем. Для проведения вычислений сначала нужно выяснить массу вещества. Исходя из пропорции, получаем, что вещества в растворе 62,5 грамма. Для определения массы воды нужно вычесть из 250 граммов массу самого вещества, в результате получаем 187,5 г.

концентрация растворов массовая доля

Виды концентраций

Что такое концентрация? Массовых долей в растворе может содержаться не более ста процентов. В химии термин «концентрация» предполагает некое содержание растворенного вещества. Существует несколько ее вариантов: молярная, массовая концентрация.

Например, если необходимо приготовить раствор из 80 граммов воды и 20 граммов поваренной соли и определить массовые доли вещества в растворе, сначала нужно определить массу раствора. Она составит сто граммов. Процентное содержание вещества получается 20 процентов.

Мы проанализировали, что представляет собой массовая доля. Молярная концентрация предполагает отношение количества вещества к объему взятого раствора. Чтобы приготовить раствор с заданной молярной концентрацией, сначала определяют массу вещества. Затем взвешивают его нужное количество и растворяют в литре растворителя.

Расчет молярной концентрации

Так, для приготовления 2 литров раствора с концентрацией 0,15 моль/л сначала рассчитывают массу соли, которая содержится в растворе. Для этого нужно разделить 0,15 моль на 2 литра, получаем 0,075 моль. Теперь вычисляем массу: 0,075 моль умножаем на 58,5 г/моль. Результат - 4,39 г.

Задачи аналитической химии

В качестве прикладной химической задачи рассматривают анализ. С его помощью выявляют состав смеси, проводят диагностические пробы, анализируют горные породы. Для этого нужно определять качественный и количественный состав раствора.

Среди тех задач, которые чаще всего встречаются в неорганической химии, выделим определение концентрации одного вещества по заданной величине у другого вещества. С помощью опытов можно осуществить постепенное добавление к раствору, у которого известна молярная концентрация, искомого раствора. Данный процесс называется титрованием.

Растворимость и растворители

Самым распространенным растворителем является вода. В ней отлично растворяются основания, кислоты, соли, некоторые органические соединения. Именно водные растворы являются самыми распространенными в природе системами. Вода выполняет функцию биологического растворителя. Она считается основой для протекания многих сред: крови, цитозолей, межклеточных жидкостей. Многие типы животных и растений живут именно в водной среде.

Растворимостью называют свойство вещества растворяться в выбранном растворителе. Это сложное явление, которое требует учета определенных нюансов и особенностей строения растворителя.

В качестве хороших органических веществ можно отметить спирты. Они в свой состав включают гидрокисльные группы, поэтому имеют высокую растворимость.

массовая доля молярная концентрация

Заключение

Любая жидкость может рассматриваться в качестве растворителя. Именно поэтому часто ведут речь о взаимной растворимости разных жидких веществ. К примеру, среди органических веществ можно упомянуть о растворимости в воде сложных эфиров.

Различные виды концентраций, используемые в неорганической и органической химии, помогают проводить качественные и количественные определения веществ. Теория растворов востребована в аналитической химии, фармацевтике и современной медицине.

fb.ru

Формула концентрации раствора в химии

Определение и формула концентрации раствора

Наиболее распространены следующие способы выражения концентрации раствора.

Массовая доля – отношение (обычно – процентное) массы растворенного вещества к массе раствора:

w = msolute / msolution× 100%.

Например, 15: (масс.) водный раствор хлорида натрия – это такой раствор, в 100 единицах массы которого содержится 15 единиц массы NaCl и 85 единиц массы воды.

Молярная доля – это отношение количества растворенного вещества (или растворителя) к сумме количеств всех веществ, составляющих раствор. В случае раствора одного вещества в другом молярная доля растворенного вещества (N2) равна:

N2 = n2 / (n1 + n2),

а молярная доля растворителя (N1):

N1 = n1 / (n1 + n2),

где n1иn2 – соответственно количество вещества растворителя и растворенного вещества.

Молярная концентрация, или молярность – отношение количества растворенного вещества к объему раствора:

СМ = n / V.

Обычно молярность обозначается СМили (после численного значения молярности) М. Так, 2М h3SO4 означает раствор, в каждом литре которого содержится 2 моля серной кислоты, т.е. СМ = 2 моль/л.

Моляльная концентрация, или моляльность – это отношение количества растворенного вещества к массе растворителя:

m = nsolute / msolvent.

Обычно моляльность обозначается буквой m. Так, для раствора серной кислоты запись m = 2 моль/кг (воды) означает, что в этом растворе на каждый килограмм растворителя (воды) приходится 2 моля серной кислоты. Моляльность раствора в отличие от его молярности не изменяется при изменении температуры.

Нормальность раствора (нормальная концентрация, молярная концентрация эквивалента) СН(Х) – это отношение количества вещества эквивалента, содержащегося в растворе, к объему этого раствора [моль / м3]. На практике нормальность раствора по аналогии с молярной концентрацией выражают в моль/л. Так, например, с(h3SO4) = 1 моль/л, с(KOH) = 0,01 моль/л. При с(В) = 1 моль/л раствор называют нормальным, при с(В) = 0,01 моль/л – сантимолярным и т.д. Приняты и такие обозначения: 1 н. раствор h3SO4; 0,01 н. раствор KOH.

Эквивалентом называется реальная или условная частица вещества, которая может замещать, присоединять, высвобождать или быть каким-либо другим способом эквивалентна одному иону водорода в кислотно-основных или ионообменных реакциях или одному электрону в окислительно-восстановительных реакциях. Моль вещества эквивалента содержит 6,02×1023 эквивалентов.

Титр раствора – это масса вещества, содержащаяся в одном кубическом сантиметре (одном миллилитре) раствора [г/мл]. Обычно обозначается буквой Т. Например, T(HCl) = 0,02 г/мл означает, что в 1 мл раствора содержится 0,02 г соляной кислоты.

Примеры решения задач

ru.solverbook.com

Расчеты при приготовлении водных растворов

Приблизительные растворы. При приготовлении приблизительных растворов количества веществ, которые должны быть взяты для этого, вычисляют с небольшой точностью. Атомные веса элементов для упрощения расчетов допускается брать округленными иногда до целых единиц. Так, для грубого подсчета атомный вес железа можно принять равным 56 вместо точного —55,847; для серы — 32 вместо точного 32,064 и т. д.

Вещества для приготовления приблизительных растворов взвешивают на технохимических или технических весах.

Принципиально расчеты при приготовлении растворов совершенно одинаковы для всех веществ.

Количество приготовляемого раствора выражают или в единицах массы (г, кг), или в единицах объема (мл, л), причем для каждого из этих случаев вычисление количества растворяемого вещества проводят по-разному.

Пример. Пусть требуется приготовить 1,5 кг 15%-ного раствора хлористого натрия; предварительно вычисляем требуемое количе-ство соли. Расчет проводится согласно пропорции:

т. е. если в 100 г раствора содержится 15 г соли (15%), то сколько ее потребуется для приготовления 1500 г раствора?

Расчет показывает, что нужно отвесить 225 г соли, тогда воды иужио взять 1500 — 225 = 1275 г. ¦

Если же задано получить 1,5 л того же раствора, то в этом случае по справочнику узнают его плотность, умножают последнюю на заданный объем и таким образом находят массу требуемого количества раствора. Так, плотность 15%-нoro раствора хлористого натрия при 15 0C равна 1,184 г/см3. Следовательно, 1500 мл составляет

Следовательно, количество вещества для приготовления 1,5 кг и 1,5 л раствора различно.

 

Расчет, приведенный выше, применим только для приготовления растворов безводных веществ. Если взята водная соль, например Na2SO4-IOh3O1 то расчет несколько видоизменяется, так как нужно принимать во внимание и кристаллизационную воду.

Пример. Пусть нужно приготовить 2 кг 10%-ного раствора Na2SO4, исходя из Na2SO4 *10h3O.

Молекулярный вес Na2SO4 равен 142,041, a Na2SO4*10h3O 322,195, или округленно 322,20.

Расчет ведут вначале па безводную соль:

Следовательно, нужно взять 200 г безводной соли. Количество десятиводной соли находят из расчета:

Воды в этом, случае нужно взять: 2000 — 453,7 =1546,3 г.

Так как раствор не всегда готовят с пересчетом на безводную соль, то на этикетке, которую обязательно следует наклеивать на сосуд с раствором, нужно указать, из какой соли приготовлен раствор, например 10%-ный раствор Na2SO4 или 25%-ный Na2SO4*10h3O.

Часто случается, что приготовленный ранее раствор нужно разбавить, т. е. уменьшить его концентрацию; растворы разбавляют или по объему, или по массе.

 

Пример. Нужно разбавить 20%-ный раствор сернокислого аммония так, чтобы получить 2 л 5%-иого раствора. Расчет ведем следующим путем. По справочнику узнаем, что плотность 5%-ного раствора (Nh5)2SO4 равна 1,0287 г/см3. Следовательно, 2 л его должны весить 1,0287*2000 = 2057,4 г. В этом количестве должно находиться сернокислого аммония:

Теперь можно подсчитать, сколько нужно взять 20%-ного рас* твора, чтобы получить 2 л 5%-ного раствора.

Полученную массу раствора можно пересчитать на объем его. Для этого массу раствора делят на его плотность (плотность 20%-ного раствора равна 1.1149 г/см3), т. е.

Учитывая, что при отмеривании могут произойти потери, нужно взять 462 мл и довести их до 2 л, т. е. добавить к ним 2000—462 = = 1538 мл воды.

Если же разбавление проводить по массе, расчет упрощается. Но вообще разбавление проводят из расчета на объем, так как жидкости, особенно в больших количествах, легче отмерить по объему, чем взвесить.

Нужно помнить, что при всякой работе как с растворением, так и с разбавлением никогда не следует выливать сразу всю воду в сосуд. Водой ополаскивают несколько раз ту посуду, в которой проводилось взвешивание или отмеривание нужного вещества, и каждый раз добавляют эту воду в сосуд для раствора.

Когда не требуется особенной точности, при разбавлении растворов или смешивании их для получения растворов другой концентрации можно пользоваться следующим простым и быстрым способом.

Возьмем разобранный уже случай разбавления 20%-ного раствора сернокислого аммония до 5%-ного. Пишем вначале так:

где 20 — концентрация взятого раствора, 0 — вода и 5'—-требуемая концентрация. Теперь из 20 вычитаем 5 и полученное значение пишем в правом нижнем углу, вычитая же нуль из 5, пишем цифру в правом верхнем углу. Тогда схема примет такой вид:

Это значит, что нужно взять 5 объемов 20%-ного раствора и 15 объемов воды. Конечно, такой расчет не отличается точностью.

Если смешивать два раствора одного и того же вещества, то схема сохраняется та же, изменяются только числовые значения. Пусть смешением 35%-ного раствора и 15%-ного нужно приготовить 25%-ный раствор. Тогда схема примет такой вид:

т. е. нужно взять по 10 объемов обоих растворов. Эта схема дает приблизительные результаты и ею можно пользоваться только тогда, когда особой точности не требуется.Для всякого химика очень важно воспитать в себе привычку к точности в вычислениях, когда это необходимо, и пользоваться приближенными цифрами в тех случаях, когда это не повлияет на результаты работы.Когда нужна большая точность при разбавлении растворов, вычисление проводят по формулам.

 

Разберем несколько важнейших случаев.

Приготовление разбавленного раствора. Пусть с — количество раствора, m%—концентрация раствора, который нужно разбавить до концентрации п%. Получающееся при этом количество разбавленного раствора х вычисляют по формуле:

а объем воды v для разбавления раствора вычисляют по формуле:

 

Смешивание двух растворов одного и того же вещества различной концентрации для получения раствора заданной концентрации. Пусть смешиванием а частей m%-ного раствора с х частями п%-ного раствора нужно получить /%-ный раствор, тогда:

Точные растворы. При приготовлении точных растворов вычисление количеств нужных веществ проверят уже с достаточной степенью точности. Атомные весы элементов берут по таблице, в которой приведены их точные значения. При сложении (или вычитании) пользуются точным значением слагаемого с наименьшим числом десятичных знаков. Остальные слагаемые округляют, оставляя после запятой одним знаком больше, чем в слагаемом с наименьшим числом знаков. В результате оставляют столько цифр после запятой, сколько их имеется в слагаемом с наименьшим числом десятичных знаков; при этом производят необходимое округление. Все расчеты производят, применяя логарифмы, пятизначные или четырехзначные. Вычисленные количества вещества отвешивают только на аналитических весах.

Взвешивание проводят или на часовом стекле, или в бюксе. Отвешенное вещество высыпают в чисто вымытую мерную колбу через чистую сухую воронку небольшими порциями. Затем из промывалки несколько раз небольшими порциями воды обмывают над воронкой бнже или часовое стекло, в котором проводилось взвешивание. Воронку также несколько раз обмывают из промывалки дистиллированной водой.

Для пересыпания твердых кристаллов или порошков в мерную колбу очень удобно пользоваться воронкой, изображенной на рис. 349. Такие воронки изготовляют емкостью 3, 6, и 10 см3. Взвешивать навеску можно непосредственно в этих воронках (негигроскопические материалы), предварительно определив их массу. Навеска из воронки очень легко переводится в мерную колбу. Когда навеска пересыпается, воронку, не вынимая из горла колбы, хорошо обмывают дистиллированной водой из промывалки.

Как правило, при приготовлении точных растворов и переведении растворяемого вещества в мерную колбу растворитель (например, вода) должен занимать не более половины емкости колбы. Закрыв пробкой мерную колбу, встряхивают ее до полного растворения твердого вещества. После этого полученный раствор дополняют водой до метки и тщательно перемешивают.

Молярные растворы. Для приготовления 1 л 1 M раствора какого-либо вещества отвешивают на аналитических весах 1 моль его и растворяют, как указано выше.

Пример. Для приготовления 1 л 1 M раствора азотнокислого серебра находят в таблице или подсчитывают молекулярную массу AgNO3, она равна 169,875. Соль отвешивают и растворяют в воде.

Если нужно приготовить более разбавленный раствор (0,1 или 0,01 M), отвешивают соответственно 0,1 или 0,01 моль соли.

Если же нужно приготовить меньше 1 л раствора, то растворяют соответственно меньшее количество соли в соответствущем объеме воды.

Нормальные растворы готовят аналогично, только отвешивая не 1 моль, а 1 грамм-эквивалент твердого вещества.

Если нужно приготовить полунормальный или децинормальный раствор, берут соответственно 0,5 или 0,1 грамм-эквивалента. Когда готовят не 1 л раствора, а меньше, например 100 или 250 мл, то берут1/10 или 1/4 того количества вещества, которое требуется для приготовления I л, и растворяют в соответствующем объеме воды.

Рис 349. Воронки для пересыпания навески а колбу.

 

После приготовления раствора его нужно обязательно проверить титрованием соответствующим раствором другого вещества с известной нормальностью. Приготовленный раствор может не отвечать точно той нормальности, которая задана. В таких случаях иногда вводят поправку.

В производственных лабораториях иногда готовят точные растворы «по определяемому веществу». Применение таких растворов облегчает расчеты при анализах, так как достаточно умножить объем раствора, пошедший на титрование, на титр раствора, чтобы получить содержание искомого вещества (в г) во взятом для анализа количестве какого-либо раствора.

Расчет при приготовлении титрованного раствора по определяемому веществу ведут также по грамм-эквиваленту растворяемого вещества, пользуясь формулой:

 

Пример. Пусть нужно приготовить 3 л раствора марганцовокислого калия с титром по железу 0,0050 г/мл. Грамм-эквивалент KMnO4 равен 31,61., а грамм-эквивалент Fe 55,847.

Вычисляем по приведенной выше формуле:

 

Стандартные растворы. Стандартными называют растворы с разными, точно определенными концентрациями, применяемые в колориметрии, например растворы, содержащие в 1 мл 0,1, 0,01, 0,001 мг и т. д. растворенного вещества.

Кроме колориметрического анализа, такие растворы бывают нужны при определении рН, при нефелометрических определениях и пр. Иногда стандартные растворы" хранят в запаянных ампулах, однако чаще приходится готовить их непосредственно перед применением. Стандартные растворы готовят в объеме не больше 1 л, а ча ще — меньше. Только при большом расходе стандартного раствори можно готовить несколько литров его и то при условии, что стандартный раствор не будет храниться длительный срок.

Количество вещества (в г), необходимое для получения таких растворов, вычисляют по формуле:

Пример. Нужно приготовить стандартные растворы CuSO4 • 5h3O для колориметрического определения меди, причем в 1 мл первого раствора должно содержаться 1 мг меди, второго — 0,1 мг, третьего —0,01 мг, четвертого — 0,001 мг. Вначале готовят достаточное количество первого раствора, например 100 мл.

В данном случае Mi = 249,68; АСu = 63,54; следовательно, для приготовления 100 мл раствора, 1 мл которого содержал бы 1 мг меди (Т = 0,001 г/мл), нужно взять

Навеску соли переносят в мерную колбу емкостью 100 мл и добавляют воду до метки. Другие растворы готовят соответствующим разбавлением приготовленного.

 

Эмпирические растворы. Концентрацию этих растворов чаще всего выражают в г/л или г/мл. Для приготовления эмпирических растворов применяют очищенные перекристаллизацией вещества или реактивы квалификации ч. д. а. или х. ч.

Пример. Нужно приготовить 0,5 л раствора CuSO4, содержашего Cu 10 мг/мл. Для приготовления раствора применяют CuSO4 • 5h3O.

Чтобы подсчитать, сколько следует взять этой солн для приготовления раствора заданного объема, подсчитывают, сколько Cu должно содержаться в нем. Для этого объем умножают на заданную концентрацию, т. е.

500*10 = 5000 мг, или 5,0000 г

После этого, зная молекулярный вес соли, подсчитывают нужное количество ее:

На аналитических весах отвешивают в бюксе точно 19,648 г чистой соли, переводят ее в мерную колбу емкостью 0,5 л. Растворение проводят, как указано выше.

К оглавлению

 

см. также

  1. Основные понятия о растворах
  2. Классификация растворов
  3. Концентрация растворов
  4. Техника приготовления растворов
  5. Расчеты при приготовлении водных растворов
  6. Растворы солей
  7. Растворы щелочей
  8. Растворы кислот
  9. Фиксаналы
  10. Некоторые замечания о титровании и точных растворах
  11. Расчеты при титровании с помощью весовых бюреток
  12. Рациональные величины
  13. Растворение жидкостей
  14. Растворение газов
  15. Индикаторы
  16. Автоматическое титрование
  17. Неводные растворы
  18. Растворение в органических растворителях
  19. Обесцвечивание растворов

 

 

www.himikatus.ru

Методы расчёта заданных концентраций

⇐ ПредыдущаяСтр 3 из 4Следующая ⇒

В лабораторной практике расчётные задачи, связанные с приготовлением растворов можно условно разделить на несколько типов:

· расчёты при использовании сухих солей;

· расчёты, связанные с разбавлением или смешиванием растворов;

· пересчёты из одной концентрации в другую.

Иногда при решении задач требуется знать плотность раствора (r), т.е. отношение массы раствора (mр-ра) к его объёму(V).

(г/мл) или (кг/м3) (1.30)

Эту величину находят из справочника (ПРИЛОЖЕНИЕ А).

1.10.1 Расчёты растворов, концентрация которых задана в массовых долях

Задача1. Приготовить 100 мл 10%-го хлорида кальция из безводной соли CaCl2.

Решение. Найдём из справочника плотность 10%-го раствора хлорида кальция:r=1,083 г/мл.

Найдём массу 100 мл раствора:

mр-ра=rV=1,083×100=108,3 г

и найдём массу растворённого вещества (CaCl2):

100 г р-ра – 10 г (СaCl2),

108,3 – Х

(г).

Найдём объём воды;

Так как плотность воды равна 1 г/мл, то масса воды и объём воды численно равны. Отсюда Vн2о= mр-ра- mв-ва:

Vн2о=108,3-10,83=97,47 (мл).

Задача 2. Приготовить 100 мл 10%-го раствора хлорида кальция из кристаллогидрата CaCl2×2Н2О.

Решение. Найдём массу растворённого вещества, содержащегося в 100 мл 10%-го раствора хлорида кальция. Она равна 10,83 г (см. задачу1).

Найдём массу кристаллогидрата CaCl2×2Н2О, содержащего 108,3 г раствора CaCl2:

CaCl2 CaCl2×Н2О

111 – 147,

10,83 – Х

(г),

где 111 г и 147 г – молярные массы CaCl2 и CaCl2×2Н2О, соответственно.

Следовательно, для приготовления раствора необходимо взять объём воды, равный: 108,3-14,34=93,96 (мл).

 

Задача 3.Приготовить 100 мл 6%-го раствора сульфата аммония из 20%-го (r=1,226 г/см3) , 2%-го (r=1,019 г/см3) и 6%-го (r=1,061 г/см3)растворов Al2(SO4)3.

Решение 1. Для приготовления растворов заданной концентрации путём смешивания двух растворов разных концентраций или путём разведения более концентрированного раствора водой удобно пользоваться правилом креста:

где a и b – процентные концентрации первого и второго растворов, причём a > b;

с – заданная процентная концентрация;

(c-b) – весовое количество первого раствора;

(a-c) – весовое количество второго раствора или чистого растворителя.

Находим по правилу креста необходимое количество каждого из растворов:

 

 

Следовательно, на 4 весовые части 20%-го раствора приходится 14 весовых частей 2%-го раствора, или в пересчёте на объём это составит:

20 %-го раствора Al2(SO4)3 – 4: 1,226=3,26 (мл),

2 %-го раствора Al2(SO4)3 – 14: 1,019=13,74 (мл),

общий объём раствора – 17 мл.

Для приготовления 100 мл 6 %-го раствора надо взять:

20 %-го раствора Al2(SO4)3: (мл),

2 %-го раствора Al2(SO4)3: (мл).

Решение 2.

Масса 100 мл 6 %-го раствора:

mр-ра=rV=1,061×100=106,1 г

Обозначим массу 20 %-го раствора Al2(SO4)3, необходимую для приготовления 100 мл 6 %-го раствора, как m1, тогда необходимая масса 2 %-го раствора будет равна 106,1 – m1. Составим уравнение материального баланса по растворенному веществу:

 

106,1 ∙ 0,06 = m1·∙ 0,2 + (106,1 - m1) .

Решая данное уравнение относительно m1, получим:

масса 20 %-го раствора Al2(SO4)3; m1 = 23,58 (г),

масса 2 %-го раствора Al2(SO4)3; (106,1 - m1) = 82,52 (г).

Пересчитаем на объемы:

объем 20 %-го раствора Al2(SO4)3: 23,58/1,226 = 19,2 (мл),

объем 2 %-го раствора Al2(SO4)3: 82,52/1,019 = 80,8 (мл).

 

Экспериментальная часть

Цель работы

Научиться: готовить растворы заданной концентрации

производить пересчёты концентраций растворов

2.2 Мерная химическая посуда

Мерной называют посуду, применяемую для измерения объёмов жидкости. К ней относятся: цилиндры, пипетки, бюретки, мерные колбы.

При измерении объёмов необходимо, чтобы глаз наблюдателя находился на одной горизонтальной линии с нижним краем мениска жидкости. Нижний край мениска жидкости должен быть на одном уровне с меткой. На рисунке 4, цифрой 2 показано правильное положение наблюдателя, цифрами 1 и 3 – неправильное.

Мерный цилиндр (рисунок 5 a) применяют в тех случаях, когда измерение жидкости не требует большой точности. Мерные цилиндры – стеклянные сосуды с нанесёнными на наружной стенке мерками, указывающими объём в миллилитрах. Вместимость цилиндров бывает от 5…10 мл до 1 л и больше. Чтобы отмерить нужный объём жидкости, её наливают в мерный цилиндр до тех пор, пока нижний край мениска не достигнет уровня нужного деления.

Пипетки (рисунок 5 б) служат для отмеривания и переноса определённого объёма жидкости. Обычные пипетки представляют собой стеклянные трубки небольшого диаметра с расширением на середине. Нижний конец пипетки слегка оттянут и имеет диаметр около 1 мм. Пипетки бывают вместимостью от 1 до 100 мл. В верхней части пипетки имеется метка, до которой набирают жидкость. Широко применяют также градуированные пипетки с делениями (рисунок 5 в).

Бюретки позволяют точно отмерить любой объём жидкости в пределах её вместимости.

Объёмные бюретки (рисунок 5 г) представляют собой стеклянные градуированные трубки, снабженные притёртым краном или стеклянным капилляром, присоединённым к бюретке с помощью резиновой трубки. Внутрь резиновой трубки закладывают стеклянную

бусинку, закрывающую выход жидкости из бюретки. При оттягивании резиновой трубки от бусины внутри неё образуется зазор для вытекания жидкости.

Мерные колбы (рисунок 5 д) применяют для приготовления заданного объёма раствора. Они представляют собой плоскодонные сосуды различной вместимости. На горлышке колбы имеется метка, а на самой колбе указана её вместимость в миллилитрах при определённой температуре.

 

а б в г д

а – мерный цилиндр; б – пипетка; в – градуированная пипетка;

г – объёмные бюретки; д – мерные колбы

Рисунок 5 – мерная посуда

 

Методика проведения работы

Для ускорения растворения вещество рекомендуется измельчить в фарфоровой ступке. Так как часть вещества при этом может быть потеряна, то измельчение необходимо проводить до взвешивания. Не рекомендуется измельчать вещества гигроскопические (чем больше удельная поверхность такого вещества, тем интенсивнее идёт поглощение). Поэтому их растворяют в том виде, как они есть, раздробив только большие куски.

Следует отметить также, что точную навеску при использовании гигроскопичных веществ взять нельзя (из-за непрерывного поглощения влаги из воздуха стрелка весов «плывёт»).

В этом случае поступают следующим образом: на технических весах быстро взвешивают немного больше расчётной массы вещества, затем вещество растворяют в воде, определяют концентрацию полученного раствора и разбавляют до заданного значения.

Иногда тонко измельчённое вещество плохо смачивается водой и плавает на её поверхности. В этом случае рекомендуется порошок сначала смочить чистым спиртом (этиловым или метиловым), а затем приливать воду.

Растворимость многих веществ увеличивается с повышением температуры. Подогревание можно проводить на газовой горелке или электрической плитке (на асбестовой сетке) при непрерывном помешивании, т. к. осевшее вещество даёт местный прогрев, что может привести к выбросу смеси из сосуда, растрескиванию посуды.

При приготовлении раствора из сухих солей взвешивают расчетное количество вещества (навеску) в чистом сухом бюксе или на часовом стекле. Затем навеску высыпают в стакан, и бюкс (часовое стекло) несколько раз ополаскивают заранее отмеренным количеством воды. Оставшуюся воду выливают в стакан и перемешивают раствор до полного растворения соли. При смешивании растворов (или разбавлении) отмеренное количество исходных растворов выливают в стакан и обязательно перемешивают.

Для приготовления растворов с концентрацией менее 1 % соответствующую навеску вещества растворяют в 100 мл воды. Например: если готовят 0,5 %-ный раствор, то 0,5 г вещества растворяют в 100 мл воды, а не в 99,5 мл, что приводит практически к несущественной ошибке. Следует прилить в стакан (колбу) с отвешенным веществом сначала часть отмеренной воды. И только после полного растворения навески добавить остальную воду.

2.3.1 Варианты заданий

1. Приготовить 100 мл раствора вещества А концентрации w% из безводной соли.

2. Приготовить 100 мл раствора вещества А концентрации w% из кристаллогидрата.

3. Приготовить 100 мл раствора вещества А концентрации w% из раствора концентрации w1% (w%<w1%).

4. Пересчитать полученные концентрации растворов из массовых долей в процентах в нормальные и молярные концентрации.

5. Рассчитать, сколько нужно взять безводной соли (кристаллогидрата) и раствора вещества А концентрацией w1%, чтобы приготовить V мл раствора концентрацией w% (w%>w1%).

 

Таблица 1 – Таблица экспериментальных данных

 

Наименование раствора Концентрация раствора Плотность раствора Погрешность
расчетная опытная теоретическая опыт-ная   %
%, масс М Н %, масс
1. 2. 3.            

 

Читайте также:

lektsia.com