Планеты Солнечной системы и их расположение по порядку. Внешние и внутренние планеты солнечной системы


Сравнительная характеристика планет Солнечной системы: описание и интересные факты

Сложно представить себе размеры Вселенной. Наша собственная Солнечная система кажется слишком большой, простираясь более чем на 4 триллиона миль от Солнца. А ведь оно - всего лишь одна из миллиардов других звезд, составляющих нашу галактику Млечный Путь.

Общая характеристика планет Солнечной системы

Обычная картинка Солнечной системы следующая: 9 планет вращаются по своим овальным орбитам вокруг постоянного, всегда пылающего Солнца.

характеристика планет Солнечной системыНо характеристика планет Солнечной системы намного сложнее и интереснее. Кроме них самих, существуют множество их спутников, а также тысячи астероидов. Далеко за пределами орбиты Плутона, которая была признана карликовой планетой, находятся десятки тысяч комет и другие замороженные миры. Привязанные гравитацией к Солнцу, они вращаются вокруг него на огромных расстояниях. Солнечная система хаотична, постоянно меняется, иногда даже резко. Силы гравитации заставляют соседние планеты влиять друг на друга, со временем меняя друг другу орбиты. Жесткие столкновения с астероидами могут придать планетам новые углы наклона. Характеристика планет Солнечной системы интересна тем, что они меняют иногда климатические условия, потому что их атмосферы развиваются и видоизменяются.

Звезда по имени Солнце

Как ни печально это осознавать, но Солнце постепенно расходует свой запас ядерного топлива. Через миллиарды лет оно расширится до размеров гигантской красной звезды, поглотит планеты Меркурий и Венеру, на Земле же температура поднимется до таких показателей, что океаны испарятся в космос, а Земля станет сухим скалистым миром, похожим на сегодняшний Меркурий. Исчерпав весь запас ядерного синтеза, Солнце уменьшится до размеров белого карлика, а через миллионы лет, уже в качестве выгоревшей оболочки, превратится в черного карлика. А ведь 5 миллиардов лет назад Солнца и его 9 планет еще не было. Существует много различных версий появления в облаках космического газа и пыли Солнца в качестве протозвезды и его системы, но в результате миллиардов лет ядерного синтеза современный человек наблюдает его таким, как сейчас.

характеристика планет Солнечной системы таблицаВместе с Землей и другими планетами звезда по имени Солнце родилась примерно 4.6 миллиарда лет назад из огромного облака пыли, которое вращалось в космосе. Наша звезда – это шар из пылающих газов, если бы можно было взвесить Солнце, весы показали бы 1990 000 000 000 000 000 000 000 000 000 кг вещества, состоящего из гелия и водорода.

Сила гравитации

Гравитация, по мнению ученых, самая таинственная загадка во вселенной. Это притяжение одной материи к другой и то, что придает планетам форму шара. Гравитация Солнца достаточно мощная для того, чтобы удерживать 9 планет, дюжину спутников и тысячи астероидов и комет. Все это удерживают вокруг Солнца невидимые нити гравитации. Но с увеличением расстояния между космическими объектами притяжение между ними быстро ослабевает. Характеристика планет Солнечной системы напрямую зависит от гравитации. Например, притяжение Плутона к Солнцу намного меньше, чем сила притяжения между Солнцем и Меркурием или Венерой. Солнце и Земля взаимно притягивают друг друга, но из-за того, что масса Солнца намного больше, то и притяжение с его стороны мощнее. Сравнительная характеристика планет солнечной системы поможет понять главные особенности каждой из планет.

Солнечные лучи путешествуют по разным направлениям в космическом пространстве, достигая всех девяти планет, которые вращаются вокруг Солнца. Но в зависимости от того, насколько отдалена планета, к ней приходит разное количество света, отсюда и разная характеристика планет солнечной системы.

Меркурий

На Меркурии, самой приближенной к Солнцу планете, Солнце кажется в 3 раза большим, по сравнению с земным Солнцем. Днем поверхность Меркурия может быть ослепительно яркой. Но небо темное даже днем, потому что на НЕМ нет атмосферы, чтобы отбивать и рассеивать солнечный свет. Когда Солнце бьет по каменному ландшафту Меркурия, температура может достигать до 430 С. Но тем не менее ночью все тепло возвращается свободно в космос, а температура поверхности планеты может упасть до –173 С.

характеристика планет Солнечной системы таблица 5 класс

Венера

Характеристика планет солнечной системы (5 класс изучает эту тему) приводит к рассмотрению ближайшей для землян планеты - Венеры. Венера, вторая от Солнца планета, окружена атмосферой, которая преимущественно состоит из газа – диоксида углерода. В такой атмосфере постоянно наблюдаются тучи из серной кислоты. Интересно, что несмотря на то что Венера более удалена от Солнца, чем Меркурий, ее поверхностная температура выше и достигает 480 С. Виной этому выступает диоксид углерода, который создает парниковый эффект и удерживает тепло на планете. Венера имеет подобный размер и густоту земной, но свойства ее атмосферы губительны для всего живого. Химические реакции в тучах производят кислоты, способные растворить свинец, олово и камни. Кроме того, Венера покрыта тысячами вулканов и реками из лавы, которые образовывались миллионы лет. Возле поверхности атмосфера Венеры в 50 раз гуще, чем атмосфера Земли. Поэтому все объекты, проникающие сквозь нее, взрываются еще до того, как попадают на поверхность. Ученые обнаружили на Венере около 400 плоских пятен, каждая из которых от 29 до 48 км в диаметре. Это – шрамы метеоритов, которые разорвались над поверхностью планеты.

характеристика планет Солнечной системы 5 клас

Земля

Земля, где все мы обитаем, имеет идеальные атмосферные и температурные условия для жизни, ведь наша атмосфера состоит в основном из азота и кислорода. Ученые доказывают, что Земля вращается вокруг Солнца, наклонившись одной стороной. Действительно, положение планеты отклоняется от прямого угла на 23.5 градуса. Этот наклон, а также свои размеры, по версии ученых, наша планета получила после мощного столкновения с космическим телом. Именно этот наклон Земли образует времена года: зиму, весну, лето и осень.

сравнительная характеристика планет солнечной системы

Марс

После Земли идет Марс. На Марсе Солнце кажется в три раза меньшим, чем с Земли. Только треть света, по сравнению с тем, что видят земляне, получает Марс. Кроме того, на этой планете часто происходят ураганы, поднимающие красную пыль с поверхности. Но, тем не менее, в летние дни температура на Марсе может достигать 17 С, как и на Земле. Марс имеет красный оттенок, потому что минералы с окисью железа в его почве отбивают красновато - оранжевый свет Солнца, другими словами, марсианская почва имеет в своем составе много ржавого железа, поэтому Марс часто называю красной планетой. Марсианский воздух очень разрежен -1 процент от густоты земной атмосферы. Атмосфера планеты состоит из диоксида углерода. Ученые допускают, что на этой планете когда-то, примерно 2 миллиарда лет назад, были реки и вода в жидком состоянии, а атмосфера содержала кислород, ведь железо покрывается ржавчиной только при взаимодействии с кислородом. Вполне возможно, что атмосфера Марса была когда-то пригодной для возникновения на этой планете жизни.

характеристика планет Солнечной системы 5 клас

Что касается химических и физических параметров, ниже показана характеристика планет Солнечной системы (таблица для планет земной группы).

Планета

Химический состав атмосферы

Физические параметры

СО2

N2

O2

Ar

h3O

Давление, атм.

Температура, С

Земля

0.03

78

21

0.93

0.1-1.0

1

От -30 до + 40

Венера

95

3-5

0.001

0.01

0.01-0.1

90

470

Марс

95

2-3

0.1-0.4

1-2

0.01- 0.1

0.05

От -70 до 0

Как можно заметить, химический состав атмосферы всех трех планет сильно отличается.

Такова характеристика планет Солнечной системы. Таблица выше наглядно показывает соотношение различных химических веществ, а также давление, температуру и наличие воды на каждой из них, так что составить общее представление по этому поводу теперь труда не составит.

Гиганты Солнечной системы

За Марсом находятся планеты-гиганты, состоящие в основном из газов. Интересна физическая характеристика планет солнечной системы, таких как Юпитер, Сатурн, Уран и Нептун.

краткая характеристика планет солнечной системыВсе гиганты покрыты толщей туч, и каждый последующий получает от Солнца все меньше света. С Юпитера Солнце выглядит как пятая часть того, что видят земляне. Юпитер – планета в Солнечной системе с самыми большими размерами. Под густыми тучами из аммиака и воды Юпитер укрыт океаном металлического жидкого водорода. Особенностью планеты является наличие гигантского красного пятна на тучах, нависающих над его экватором. Это гигантский шторм длиной почти 48 000 км, который вращается над планетой уже более чем 300 лет. Сатурн – это планета-шоу в Солнечной системе. На Сатурне солнечный свет еще слабее, но все же оно имеет достаточную мощность, чтобы осветить огромную систему колец этой планеты. Тысячи колец, которые состоят преимущественно изо льда, освещаются Солнцем, превращая их в гигантские круги света.физическая характеристика планет солнечной системы

Кольца Сатурна не изучены еще учеными-землянами. По некоторым версиям, они образовались в результате столкновения его спутника с кометой или астероидом и под действием огромной гравитации превратились в кольца.

Планета Уран – холодный мир, который находится от главного светила на расстоянии 2.9 миллиарда км. Средняя температура его атмосферы составляет -177 С. Это планета и наибольшим наклоном и вращается вокруг Солнца, лежа на боку, да еще в противоположном направлении.

Плутон

Самая отдаленная 9 планета – ледяной Плутон - сияет отдаленным холодным светом, и находится на расстоянии 5.8 миллиардов километров и выглядит яркой звездой в темном небе. общая характеристика планет солнечной системыЭта планета настолько маленькая и так отдалена от Земли, что ученые знают о ней совсем немного. Ее поверхность состоит из азотного льда, для того чтобы сделать один оборот вокруг Солнца, ему необходимо примерно 284 земных года. Солнце на этой планете ничем не отличается от миллиардов других звезд.

Полная характеристика планет Солнечной системы

Таблица (5-классники изучают эту тему достаточно подробно), расположенная ниже, позволяет не только составить представление о планетах Солнечной системы, но и дает возможность сравнить их по основным параметрам.

Планета

Расстояние от Солнца, астр. ед.

Период обращения, лет

Период вращения вокруг оси

Радиус, относительно радиусу Земли

Масса, относительно массе Земли

Плотность, кг/м3

Количество спутников

Меркурий

0.4

0.24

59 сут

0.38

0.055

5430

-

Венера

0.7

0.62

243 сут

0.95

0.815

5240

-

Земля

1.0

1.0

23 ч. 56 мин.

1.00

1.000

5515

1

Марс

1.5

1.88

24 ч. 37 мин.

0.53

0.107

3940

2

Юпитер

5.2

11.87

9 ч. 50 мин.

11.2

318

1330

61

Сатурн

9.6

29.67

10 ч. 12 мин.

9.4

95.2

700

31

Уран

19.2

84.05

17 ч. 14 мин.

4.0

14.5

1300

21

Нептун

30.1

164.49

16 ч. 07 мин.

3.9

17.2

1760

8

Как можно заметить, подобной Земле планеты в нашей Галактике нет. Приведенная выше характеристика планет Солнечной системы (таблица, 5 класс ) дает возможность понять это.

Заключение

характеристика планет солнечной системы

Краткая характеристика планет Солнечной системы позволит читателям немного окунуться в мир космоса и помнить, что земляне пока являются единственными разумными существами среди огромной Вселенной и окружающий их мир необходимо постоянно оберегать, сохранять и восстанавливать.

fb.ru

Планеты Солнечной системы и их расположение по порядку

Солнечная система— планетная система, включающая в себя центральную звезду — Солнце — и все естественные объекты космоса, вращающиеся вокруг него. Она сформировалась путем гравитационного сжатия газопылевого облака примерно 4,57 млрд. лет назад. Узнаем, какие планеты входят в состав солнечной системы, как расположены они по отношению к Солнцу и их краткую характеристику.

Краткая информация о планетах Солнечной системы

Количество планет в Солнечной системе – 8, и классифицируются они в порядке удаления от Солнца:

  • Внутренние планеты или планеты земной группы – Меркурий, Венера, Земля и Марс. Они состоят, в основном, из силикатов и металлов
  • Внешние планеты – Юпитер, Сатурн, Уран и Нептун – так называемые газовые гиганты. Они намного более массивны, чем планеты земной группы. Крупнейшие планеты Солнечной системы, Юпитер и Сатурн, состоят в основном, из водорода и гелия; меньшие газовые гиганты, Уран и Нептун, помимо водорода и гелия, содержат в составе своих атмосфер метан и угарный газ.

Рис. 1. Планеты Солнечной системы.

Список планет Солнечной системы по порядку от Солнца выглядит так: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. Перечисляя планеты от большей к меньшей, этот порядок меняется. Самой крупной планетой является Юпитер, затем идут Сатурн, Уран, Нептун, Земля, Венера, Марс и, наконец, Меркурий.

Все планеты обращаются вокруг Солнца в одном направлении с вращением Солнца (против часовой стрелки, если смотреть со стороны северного полюса Солнца).

Самой большой угловой скоростью обладает Меркурий — он успевает совершить полный оборот вокруг Солнца всего за 88 земных суток. А для самой удаленной планеты — Нептуна — период обращения составляет 165 земных лет.

Большая часть планет вращается вокруг своей оси в ту же сторону, что и обращается вокруг Солнца. Исключения составляют Венера и Уран, причем Уран вращается практически «лежа на боку» (наклон оси около 90 градусов).

ТОП-2 статьикоторые читают вместе с этой

Таблица. Последовательность расположения планет в Солнечной системе и их особенности.

Планета

Расстояние от Солнца

Период обращения

Период вращения

Диаметр, км.

Кол-во спутников

Плотность г/куб. см.

Меркурий

0,39

88 дней

58,6 сут.

4878

5,5

Венера

0,72

224,7 дней

243 сут.

12100

5,2

Земля

1,00

365,24 дней

24 часа

12742

1

5,5

Марс

1,52

687 дней

24,5 часа

6794

2

3,9

Юпитер

5,2

11,9 лет

10 часов

139800

16

1,3

Сатурн

9,54

29,5 лет

10,2 часов

116000

30

0,7

Уран

19,19

84 года

10,7 часов

50800

15

1,4

Нептун

30,07

164,8 лет

16 часов

48600

6

1,6

Планеты земной группы (внутренние планеты)

Четыре ближайшие к Солнцу планеты состоят преимущественно из тяжелых элементов, имеют малое количество спутников, у них отсутствуют кольца. В значительной степени они состоят из тугоплавких минералов, таких как силикаты, которые формируют их мантию и кору, и металлов, таких как железо и никель, которые формируют их ядро. У трех из этих планет — Венеры, Земли и Марса — имеется атмосфера.

  • Меркурий – является ближайшей планетой к Солнцу и наименьшей планетой системы. У планеты нет спутников.
  • Венера – близка по размеру к Земле и, как и Земля, имеет толстую силикатную оболочку вокруг железного ядра и атмосферу (из-за этого Венеру нередко называют «сестрой» Земли). Однако количество воды на Венере гораздо меньше земного, а ее атмосфера в 90 раз плотнее. У Венеры нет спутников.

Венера – самая горячая планета нашей системы, температура ее поверхности превышает 400 градусов по Цельсию. Наиболее вероятной причиной столь высокой температуры является парниковый эффект, возникающий из-за плотной атмосферы, богатой углекислым газом.

Рис. 2. Венера – самая горячая планета Солнечной системы

  • Земля – является крупнейшей и самой плотной из планет земной группы. Вопрос о том, существует ли жизнь где-либо, кроме Земли, остается открытым. Среди планет земной группы Земля является уникальной (прежде всего, за счет гидросферы). Атмосфера Земли радикально отличается от атмосфер других планет — она содержит свободный кислород. У Земли есть один естественный спутник — Луна, единственный большой спутник планет земной группы Солнечной системы.
  • Марс – меньше Земли и Венеры. Он обладает атмосферой, состоящей главным образом из углекислого газа. На его поверхности есть вулканы, самый большой из которых, Олимп, превышает размерами все земные вулканы, достигая высоты 21,2 км.

Внешняя область Солнечной системы

Внешняя область Солнечной системы является местом нахождения газовых гигантов и их спутников.

  • Юпитер – обладает массой в 318 раз больше земной, и в 2,5 раза массивнее всех остальных планет, вместе взятых. Он состоит главным образом из водорода и гелия. У Юпитера имеется 67 спутников.
  • Сатурн – известен своей обширной системой колец, это наименее плотная планета Солнечной системы (его средняя плотность меньше плотности воды). У Сатурна имеется 62 спутника.

Рис. 3. Планета Сатурн.

  • Уран – седьмая планета от Солнца является самой легкой из планет-гигантов. Уникальным среди других планет его делает то, что он вращается «лежа на боку»: наклон оси его вращения к плоскости эклиптики равен примерно 98 градусам. У Урана 27 спутников.
  • Нептун – последняя планета в Солнечной системе. Хотя и немного меньше Урана, более массивная и поэтому более плотная. У Нептуна имеется 14 известных спутников.

Что мы узнали?

Одна из занимательных тем астрономии – это строение Солнечной системы. Мы узнали, какие названия планет Солнечной системы бывают, в какой последовательности они расположены по отношению к Солнцу, каковы их отличительные особенности и краткие характеристики. Данная информация настолько интересна и познавательна, что будет полезна даже для детей 4 класса.

Тест по теме

obrazovaka.ru

Солнечная система. Планеты Солнечной системы

Солнечная системаСолнечная система - это система планет, в центре которой находится яркая звезда, источник энергии, тепла и света - Солнце.По одной из теорий Солнце образовалось вместе с Солнечной системой около 4,5 миллиардов лет назад в результате взрыва одной или нескольких сверхновых звезд. Изначально Солнечная система представляла собой облако из газа и частиц пыли, которые в движении и под воздействием своей массы образовали диск, в котором возникла новая звезда Солнце и вся наша Солнечная система.

В центра Солнечной системы находится Солнце, вокруг которого по орбитам вращаются девять крупных планет. Так как Солнце смещено от центра планетарных орбит, то за цикл оборота вокруг Солнца планеты то приближаются, то отдаляются по своим орбитам.

Различают две группы планет:

планеты земной группы

Планеты земной группы: Меркурий, Венера, Земля и Марс. Эти планеты небольшого размера с каменистой поверхностью, они находятся ближе других к Солнцу.

планеты гиганты

Планеты гиганты: Юпитер, Сатурн, Уран и Нептун. Это крупные планеты, состоящие в основном из газа и им характерно наличие колец, состоящих из ледяной пыли и множества скалистых кусков.

А вот Плутон не попадает ни в одну группу, т.к., несмотря на свое нахождение в Солнечной системе, слишком далеко расположен от Солнца и имеет совсем небольшой диаметр, всего 2320 км, что в два раза меньше диаметра Меркурия.

СолнцеСолнцеСолнце представляет собой гигантский огненный шар очень высокой температуры, состоящий из из плазмы (ионизированного газа) в составе с водородом и гелием. Диаметр солнца 1,4 млн км, температура на поверхности 5700° C, а в ядре 14 000 000° C. Солнце удалено от Земли на 149,6 млн км и имеет жизненно важное значение для всего растительного и животного мира на Земле. Что интересно, солнце светит почти белым светом, но у поверхности планеты Земля за счет сильного рассеивания приобретает желтый цвет, а при ясной погоде вместе с голубым цветом неба лучи Солнца вновь приобретают белое освещение... подробнее

Планеты Солнечной системы

Давайте начнем увлекательное знакомство с планетами Солнечной системы по порядку их расположения от Солнца, а также рассмотрим их основные спутники и некоторые другие космические объекты (кометы, астероиды, метеориты) в гигантских просторах нашей планетарной системы.

МеркурийМеркурийСамая маленькая и самая близкая к Солнцу планета. Меркурий так медленно вращается, что проходя полный круг вокруг солнца, совершает оборот вокруг своей оси всего 1,5 раза, из-за чего солнечные сутки на планете длятся 58 земных суток. Поэтому на ночной половине Меркурия температура опускается до -180° C, а на дневной половине планеты раскаляется до +430° C... подробнее

ВенераВенераСамая близкая к Земле планета. Венеру окружает слой очень плотных облаков, вследствии парникового эффекта. Температура поверхности планеты разогрета до +470° C, процент содержания в атмосфере углекислого газа гораздо больше, чем в горных породах, при этом планета расположена совсем недалеко от Солнца, что и приводит к такому эффекту повышения температуры. На Венере постоянно происходят вспышки молний, превышающие по интенсивности на Земле, что, возможно, также связывают с вулканической деятельностью... подробнее

ЗемляЗемляПланета Земля обладает атмосферой, которую удерживают силы гравитации, в состав атмосферы входят важные элементы водорода, углерода, которые делают возможным на Земле жизнь. Атмосфера состоит из нескольких слоев, нижний из которых - тропосфера находится на 10-15 км от поверхности Земли. В этом слое формируются облака и другие природные явления, температура тропосферы -40° C -50° C. Выше расположен другой слой - стратосфера, который содержит газ озон, он поглощает волны солнечной радиации, под воздействием которых в стратосфере температура повышается до +15° C. Еще выше - ионосфера, где температура понижается до -90° C.

Поверхность Земли состоит на 2/3 из воды, остальная часть это континенты, где и в воде и на суше развивается жизнь. Кислород на Земле, не критическая температура на поверхности планеты и другие свойства дали благоприятную возможность для существования растительного, животного мира и жизни человека на Земле... подробнее

Спутник Земли: ЛунаЛунаУ планеты Земля есть свой верный спутник Луна. На ее поверхности отсутствует атмосфера, состоит из горных пород, а вся поверхность луны покрыта кратерами и тонким слоем пыли из мелкого вещества "реголита", который образовался вследствие многократных и постоянных падений метеоритов.... подробнее

МарсМарсНебольшая планета, которая представляется невооруженным глазом, как красная планета. Наличие на планете образований, напоминающих русла рек, а также следов каньонов и океанов, говорит в пользу теории, что Марс наиболее похож по структуре на планету Земля. До сих пор, ученые подразумевают наличие воды на планете. Также, как и на нашей планете, на Марсе присутствует атмосфера, только содержание в ней кислорода ничтожно мало, всего 0,13%, а давление на поверхности гораздо ниже земного... подробнее

Спутники Марса: Фобос и ДеймосФобос и ДеймосУ Марса есть два спутника - Фобос и Деймос, диаметры спутников совсем небольшие и они больше похожи на астероиды из-за неровной поверхности. Диаметр Фобоса - 27км, диаметр Деймоса - 15 км... подробнее

ЮпитерЮпитерСамая крупная планета в Солнечной системе, состоящая из газа, слои которого находятся в постоянных вихреобразных движениях. Диаметр Юпитера огромный - 143 000 км (для сравнения: диаметр Земли 13 000км). Не смотря на свои крупные размеры, Юпитер очень быстро вращается вокруг своей оси (за 9ч 50 мин земных суток) из-за чего диаметры на полюсах планеты сжаты, а экватор растянут... подробнее

Кольца и спутники Юпитера: Спутники ЮпитераЕвропа, Ио, Ганимед, Каллисто и другие...Планету Юпитер окружает целое семейство из 16 спутников, причем каждый из них имеет свои, непохожие на другие особенности... подробнее

СатурнСатурнЭта удивительная и красивая планета обладает ярко-выраженными кольцами, которые легко разглядеть в обычный телескоп, а уникальность Сатурна еще и в том, что его плотность ниже средней плотности воды и, если представить, что на поверхности мог бы быть океан, то можно было бы увидеть невероятное зрелище, как его воды легко плескались бы на поверхности планеты... подробнее

Кольца и спутники Сатурна: спутники СатурнаТитан, Энцелад и другие...Характерные кольца есть не только у планеты Сатурн, но и на других планетах-гигантах. Вокруг Сатурна кольца особенно четко видно, потому что состоят из миллиардов мелких частиц, которые вращаются вокруг планеты, помимо нескольких колец у Сатурна есть 18 спутников, один из которых Титан, его диаметр 5000км, что делает его самым большим спутником Солнечной системы... подробнее

УранУранЭта необычная планета видна наблюдателю в синих и зеленых цветах за счет поглощения водородом и метаном инфракрасного спектра. На поверхности Урана бушуют ветры с огромной скоростью до 600 км/ч, двигаясь по ходу вращения планеты. Уникальность Урана еще в том, что его ось вращения сильно наклонена, почти параллельно к плоскости эклиптики, поэтому с Земли полюса планеты можно увидеть только наполовину и то, только на протяжении 42 лет. Пока единственная теория этого феномена такая - возможно, в истории планеты было столкновение с каким-то крупным небесным телом... подробнее

Кольца и спутники Урана: спутники УранаТитания, Оберон и другие...Планета Уран имеет 17 спутников и, как и другие планеты-гиганты, опоясывающие планету тонкие кольца, которые практически не имеют способности отражать свет, поэтому открыты были не так давно в 1977 году совершенно случайно... подробнее

НептунНептунЭта планета, подобно Урану, состоит из газа в основной состав которой входят вода, метан и аммиак. Именно, от большой концентрации в атмосфере метана планета приобрела голубой цвет. Над поверхностью Нептуна простираются облака из аммиака и воды, а над ними плотный слой метановых облаков, кроме того в атмосфере планеты присутствует водород и гелий. Сама атмосфера обладает повышенной активностью, где мощные ветра дуют со скоростью свыше 2000 км/ч, образуя огромные пятна размером с нашу планету... подробнее

Кольца и спутники Нептуна: спутники НептунаТритон, Нереида и другие...Изначально до исследования Нептуна космическим аппаратом "Вояджер-2" было известно о двух спутников планеты - Тритон и Нерида. Интересный факт, что спутник Тритон имеет обратное направление орбитального движения, также на спутнике были обнаружены странные вулканы, которые извергали газ азот, словно гейзеры, расстилая массу темного цвета (из жидкого состояния в пар) на много километров в атмосферу. Во время своей миссии "Вояджер-2" обнаружил еще шесть спутников планеты Нептун... подробнее

Космические объекты Солнечной системы

кометыКометы Несущиеся на огромной скорости и путешествующие по огромным орбитам, проложенным во вселенной, кометы, так называются эти небесные тела, состоят из яркой светящейся головы и невероятно длинного (до 100 миллионов км) шлейфа хвоста. Эти одиночные странники могут удаляться на долгое время за пределы Солнечной системы и возвращаясь устремляться ближе к нашей планете, двигаясь преодолевая гигантские расстояния своей орбиты... подробнее

астероидыАстероиды Подобно планетам, только совсем небольших размеров, астероиды вращаются вокруг Солнца, они имеют каменистую структуру поверхности и по некоторым характеристикам бывают похожи на небольшие планеты, поэтому их иногда называют "малые планеты". Наибольшее скопление астероидов находится между Марсом и Юпитером, эта зона получила название "пояс астероидов". Астероиды имеют самые разные размеры: маленькие от нескольких десятков сантиметров в диаметре, как кухонная кастрюлька, и крупные диаметром до 250 и выше км. Так самый крупный из известных астероидов Церера имеет диаметр в 1000 км... подробнее

метеоритыМетеориты Падающие звезды - так называют метеорный дождь, который происходит каждый год в начале августа и в другие промежутки в течении года. Иногда "падающие звезды" метеориты можно увидеть невооруженным глазом, они промелькают, словно искорка, чиркнувшая синеву ночного неба на доли секунд. Это и есть небольшие частички космической пыли, которые падают на Землю и, испаряясь в плотных слоях атмосферы, оставляют непродолжительный яркий след на звездном небе... подробнее

Далекие объекты Солнечной системы

ПлутонПлутонЭта самая далекая в Солнечной системе ледяная планета по своим характеристикам могла бы относиться к земной группе планет, но с 2006 года по решению МАС Плутон причислили к карликовым планетам наряду с Эридой и Церерой. Плутон имеет каменистое ядро с возможным содержанием льда, обледенелую мантию и кору, которая формирует поверхность планеты. Вероятней всего под верхним слоем находится толстая масса льда толщиной свыше 200 км, поэтому планета состоит в основном из компонентов воды и метана... подробнее

Спутники Плутона: ХаронХарон, Гидра, Некта и другие...На данный момент у планеты Плутон известно о 5 спутников. Это крупный спутник Харон, 2 малых спутника Гидра и Никта и ещё 2 небольших спутника P4 и P5. Спутник Плутона Харон уникален тем, что обладает в сравнении со спутниками других планет совсем маленькими размерами. Он расположен очень близко к планете и делает оборот вокруг Плутона с такой же скоростью оборота планеты вокруг своей оси, поэтому этот спутник всегда находится в одной и той же точке над планетой... подробнее

транснептуновые объектыПояс Эджворта-Койпера и облако ОортаЗа границами орбиты Нептуна находятся дальние объекты Солнечной системы, которые получили формулировку "транснептуновые объекты" среди которых объекты пояса Койпера, малые тела, планеты-карлики, например система Плутон-Харон, карликовая планета Эрида и другие объекты, чаще всего состоящие изо льда. Еще дальше находится рассеянный диск, где объекты сильно рассеяны, а еще дальше на расстоянии почти в 1 световой год расположено облако Оорта, которое, возможно, является строительным материалом для образования комет... подробнее

карликовые планеты Солнечной системыКарликовые планеты Солнечной системыВ нашей Солнечной системе есть место не только для восьми планет, таких планет гораздо больше. Находясь за областью орбиты Нептуна такие небесные объекты движутся по огромным орбитам, то приближаясь, то отдаляясь от Солнца на огромные астрономические величины, некоторые совершая оборот вокруг Солнца более чем за 4000 лет. Это карликовые планеты, о многих из которых сейчас хорошо известно, но таких карликовых планет может быть намного больше... подробнее

Планеты в других солнечных системах

Планеты других солнечных системДалеко-далеко на расстоянии многих световых лет от нашего Солнца светят другие звезды, которые образуют свои планетные системы. Такие планеты получили название "экзопланеты" и у них тоже есть свои звезды, вокруг которых проходят их орбиты. Современные технологии позволяют обнаруживать все новые планеты и целые планетные системы, принадлежащие своей звезде. В одной только галактике Млечный путь таких планет может быть свыше 100 миллиардов, до 20 миллиардов планет могут иметь похожие на земные свойства поверхности, а на некоторых из них может быть даже жизнь...подробнее

xn----8sbiecm6bhdx8i.xn--p1ai

Как устроены планеты — Naked Science

Восемь планет нашей Солнечной системы принято разделять на внутренние (Меркурий, Венера, Земля, Марс), расположенные ближе к звезде, и внешние (Юпитер, Сатурн, Уран, Нептун). Отличаются они не только расстоянием до Солнца, но и рядом других характеристик. Внутренние планеты ? плотные и каменистые, небольших размеров; внешние ? газовые гиганты. У внутренних совсем немного естественных спутников, или нет вовсе; у внешних их десятки, а у Сатурна есть еще и кольца.

 

Сравнительные размеры планет (слева направо: Меркурий, Венера, Земля, Марс)

©NASA

 

Базовая «анатомия» внутренних планет Солнечной системы проста: все они состоят из коры, мантии и ядра. Кроме того, у некоторых ядро разделяется на внутреннее и внешнее. Например, как устроена Земля? Твердая кора покрывает полурасплавленную мантию, а в центре находится «двухслойное» ядро ? жидкое внешнее и твердое внутреннее. Кстати, именно наличие жидкого металлического ядра создает на планете глобальное магнитное поле. На Марсе, к примеру, все немного иначе: твердая кора, твердая мантия, твердое ядро ? он напоминает цельный бильярдный шар, и никакого магнитного поля у него нет.

 

Газовые гиганты ? Сатурн и Юпитер ? сложены совершенно иначе. Из самого названия этого типа планет понятно, что они представляют собой огромные шары газа, не имеющие твердой поверхности. Если б кому-нибудь довелось спускаться на одну из таких планет, он падал бы и падал к ее центру, где расположено небольшое твердое ядро. На Уране и Нептуне аммиак, метан и другие знакомые нам газы могут существовать лишь в твердой форме, поэтому две дальние планеты представляют собой огромные шары из льда и твердых фрагментов ? ледяные гиганты. Впрочем, давайте рассмотрим их все по порядку, одну за другой.

 

Меркурий: громадное ядро

 

Ближайшая к Солнцу планета ? одна из самых плотных в нашем списке: будучи чуть меньше спутника Сатурна Титана, она более чем вдвое тяжелее его. Плотнее Меркурия только Земля, но Земля достаточно велика для того, чтобы ее уплотняла еще и собственная гравитация, а если б этот эффект не проявлялся, то Меркурий был бы чемпионом.

 

Здесь царит тяжелое железо-никелевое ядро. Оно исключительно велико для планеты таких размеров ? по некоторым предположениям, ядро может занимать основную часть объема Меркурия и иметь радиус около 1800-1900 км, примерно с Луну. Зато окружающие его кремниевые мантия и кора сравнительно тонки, не более 500-600 км в толщину. Судя по тому, что планета вращается слегка неравномерно (как сырое яйцо), ядро ее расплавлено и создает на планете глобальное магнитное поле.

 

Происхождение большого, плотного, исключительно богатого железом ядра Меркурия остается загадкой. Возможно, некогда Меркурий был в несколько раз крупнее, и ядро его не было чем-то аномальным, но в результате столкновения с неизвестным телом от него «отвалился» изрядный кусок коры и мантии. К сожалению, подтвердить эту теорию пока не удается.

 

1. Кора, толщина — 100-300 км. 2. Мантия, толщина — 600 км. 3. Ядро, радиус — 1800 км.

©Joel Holdsworth

 

Венера: толстая кора

 

Самая беспокойная и горячая планета Солнечной системы. Ее чрезвычайно плотная и бурная атмосфера состоит из углекислого газа, метана и сероводорода, который выбрасывают многочисленные активные вулканы. Поверхность Венеры на 90% покрыта базальтовой лавой, здесь имеются обширные возвышенности на манер земных материков ? жаль, что вода в жидком виде здесь существовать не может, вся она давно испарилась.

 

Внутреннее строение Венеры изучено плохо. Считается, что ее толстая силикатная кора уходит в глубину на несколько десятков километров. Судя по некоторым данным, 300-500 млн лет назад планета полностью обновила кору в результате катастрофических масштабов вулканизма. Предположено, что тепло, которое вырабатывается в недрах планеты из-за радиоактивного распада, не может на Венере «стравливаться» постепенно, как на Земле, посредством тектоники плит. Тектоники плит здесь нет, и энергия эта накапливается подолгу, и время от времени «прорывается» такими глобальными вулканическими «бурями».

 

Под корой Венеры начинается 3000-километровый слой расплавленной мантии неустановленного состава. А раз Венера относится к тому же типу планет, что и Земля, у нее предполагается и наличие железо-никелевого ядра диаметром около 3000 км. С другой стороны, наблюдения не обнаружили у Венеры собственного магнитного поля. Это может означать, что заряженные частицы в ядре не двигаются, и оно находится в твердом состоянии.

 

Возможное внутреннее строение Венеры

©Wikimedia/ Vzb83

 

Земля: всё идеально

 

Наша любимая родная планета изучена, конечно, лучше всех, в том числе и геологически. Если двигаться от ее поверхности в глубину, твердая кора будет тянуться до примерно 40 км. Резко отличаются континентальная и океаническая кора: толщина первой может доходить до 70 км, а второй ? практически не бывает более 10 км. Первая содержит немало вулканических пород, вторая покрыта толстым слоем осадочных.

 

Кора, как потрескавшаяся сухая грязь, разделена на литосферные плиты, двигающиеся относительно друг друга. Судя по современным данным, тектоника плит ? уникальное в Солнечной системе явление, которое обеспечивает постоянное и некатастрофическое, в целом спокойное обновление ее поверхности. Очень удобно для всех!

 

Ниже начинаются слои мантии: верхняя (40-400 км), нижняя (до 2700 км). На мантию приходится львиная доля массы планеты ? почти 70%. По объему мантия еще внушительнее: если не считать атмосферу, она занимает около 83% нашей планеты. Состав мантии, скорее всего, напоминает состав каменистых метеоритов, она богата кремнием, железом, кислородом, магнием. Несмотря на постоянное перемешивание, не стоит считать мантию жидкой в привычном понимании этого слова. Из-за огромного давления почти все ее вещество находится в кристаллическом состоянии.

 

Наконец, мы попадем в железо-никелевое ядро: расплавленное внешнее (на глубине до 5100 км) и твердое внутреннее (вплоть до 6400 км). На ядро приходится почти 30% массы Земли, а конвекция жидкого металла во внешнем ядре создает на планете глобальное магнитное поле.

 

Общая структура планеты Земля

©Wikimedia/ Jeremy Kemp

 

Марс: застывшие плиты

 

Хотя сам Марс заметно меньше Земли, интересно, что площадь его поверхности примерно равна площади земной суши. Но перепады высот здесь куда заметнее: на Красной планете расположены самые высокие в Солнечной системе горы. Местный Эверест ? Олимпус Монс ? поднимается на высоту 24 км, а громадные горные хребты выше 10 км могут тянуться на тысячи километров.

 

Покрытая базальтовыми породами кора планеты в северном полушарии имеет толщину около 35 км, а в южном ? аж до 130 км. Считается, что некогда на Марсе также существовало движение литосферных плит, однако с какого-то момента они остановились. Из-за этого вулканические точки перестали менять свое расположение, и вулканы стали расти и расти сотни миллионов лет, создавая исключительно могучие горные вершины.

 

Средняя плотность планеты довольно невелика ? видимо, из-за небольших размеров ядра и наличия в нем немалого (до 20%) количества легких элементов ? скажем, серы. Судя по имеющимся данным, ядро Марса имеет радиус около 1500-1700 км и остается жидким лишь частично, а значит ? способно создавать на планете лишь очень слабое магнитное поле.

 

Сравнение строения Марса и других планет земной группы

©NASA

 

Юпитер: сила тяжести и легкие газы

 

Сегодня не существует технических возможностей исследовать строение Юпитера: слишком уж велика эта планета, слишком сильна ее гравитация, слишком плотна и неспокойна атмосфера. Впрочем, где здесь кончается атмосфера и начинается сама планета, сказать трудно: этот газовый гигант, по сути, не имеет никаких четких внутренних границ.

 

По существующим теориям, в центре Юпитера имеется твердое ядро по массе в 10-15 раз больше Земли и в полтора раза крупнее ее по размерам. Впрочем, на фоне планеты-великана (масса Юпитера больше массы всех остальных планет Солнечной системы вместе взятых) эта величина совсем незначительна. Вообще же Юпитер состоит на 90% из обычного водорода, а на оставшиеся 10% ? из гелия, с некоторым количеством простых углеводородов, азота, серы, кислорода. Но не стоит думать, что из-за этого структура газового гиганта «проста».

 

При колоссальном давлении и температуре водород (а по некоторым данным, и гелий) здесь должен существовать, в основном, в необычной металлической форме ? этот слой, возможно, тянется на глубину в 40-50 тыс. км. Здесь электрон отрывается от протона и начинает вести себя свободно, как в металлах. Такой жидкий металлический водород, естественно, является отличным проводником и создает на планете исключительно мощное магнитное поле.

 

Модель внутренней структуры Юпитера

©NASA

 

Сатурн: саморазогревающаяся система

 

Несмотря на все внешние различия, отсутствие знаменитого Красного пятна и наличие еще более знаменитых колец, Сатурн очень похож на соседний Юпитер. Он состоит из водорода на 75%, и на 25% из гелия, со следовым количеством воды, метана, аммиака и твердых веществ, в основном сосредоточенных в горячем ядре. Как и на Юпитере, здесь имеется толстый слой металлического водорода, создающий мощное магнитное поле.

 

Пожалуй, главным отличием двух газовых гигантов являются теплые недра Сатурна: процессы в глубине поставляют планете уже больше энергии, чем солнечное излучение ? он излучает в 2,5 раза больше энергии сам, чем получает от Солнца.

 

Этих процессов, видимо, два (отметим, что и на Юпитере они также работают, просто на Сатурне имеют большее значение) ? радиоактивный распад и механизм Кельвина ? Гельмгольца. Работу этого механизма можно представить  довольно легко: планета охлаждается, давление в ней падает,  и она немного сжимается, а сжатие создает дополнительное тепло. Впрочем, нельзя исключать и наличие других эффектов, создающих энергию в недрах Сатурна.

 

Внутреннее строение Сатурна

©Wikimedia

 

Уран: лед и камень

 

А вот на Уране внутреннего тепла явно недостаточно, причем настолько, что это до сих пор требует специального объяснения и озадачивает ученых. Даже Нептун, на Уран очень похожий, излучает тепло в разы больше, Уран же мало того, что получает от Солнца совсем немного, так и отдает порядка 1% этой энергии. Это самая холодная планета Солнечной системы, температура здесь может падать до 50 Кельвин.

 

Считается, что основная масса Урана приходится на смесь льдов ? водного, метанового и аммиачного. Вдесятеро меньше по массе здесь водорода с гелием, и еще меньше твердых пород, скорее всего, сосредоточенных в сравнительно небольшом каменном ядре. Основная доля приходится на ледяную мантию. Правда, этот лед ? не совсем та субстанция, к которой мы привыкли, он текуч и плотен.

 

Это означает, что у ледяного гиганта тоже нет никакой твердой поверхности: газообразная, состоящая из водорода и гелия атмосфера без явной границы переходит в жидкие верхние слои самой планеты.

 

Внутреннее строение Урана  

©Wikimedia/ FrancescoA

 

Нептун: алмазный дождь

 

Как и у Урана, у Нептуна атмосфера особенно заметна, она составляет 10-20% всей массы планеты и простирается на 10-20% расстояния до ядра в ее центре. Состоит она из водорода, гелия и метана, который придает планете голубоватый цвет. Опускаясь сквозь нее вглубь, мы заметим, как атмосфера постепенно уплотняется, медленно переходя в жидкую и горячую электропроводящую мантию.

 

Мантия Нептуна в десяток раз тяжелее всей нашей Земли и богата аммиаком, водой, метаном. Она действительно горяча ? температура может достигать тысяч градусов ? но традиционно вещество это называют ледяным, а Нептун, как и Уран, относят к ледяным гигантам.

 

Существует гипотеза, согласно которой ближе к ядру давление и температура достигают такой величины, что метан «рассыпается» и «спрессовывается» в кристаллы алмазов, которые на глубине ниже 7000 км образуют океан «алмазной жидкости», который проливается «дождями» на ядро планеты. Железо-никелевое ядро Нептуна богато силикатами и лишь немногим больше земного, хотя давление в центральных областях гиганта намного выше.

 

1. Верхняя атмосфера, верхние облака 2. Атмосфера, состоящая из водорода, гелия и метана 3. Мантия, состоящая из воды, аммиака и метанового льда 4. Железо-никелевое ядро  

©NASA

 

naked-science.ru

Все, что нужно знать о нашей Солнечной системе

Вместе с праздником, который нам принесла серия статей о том, как SpaceX собирается колонизировать Марс, мы совсем забыли рассказать о месте, где все это будет происходить: о Солнечной системе. По правде говоря, очень немногие люди отдают себе полный отчет в том, как устроена наша планетарная система. И поскольку мы вот-вот окажемся в эпохе, когда космические корабли будут бороздить космические просторы (без шуток), пора заниматься космическим ликбезом.

Вселенная — очень большое место, в котором мы ютимся в небольшом уголочке. Он называется Солнечной системой и является не только крошечной долей известной нам Вселенной, но и очень небольшой частью наших галактических окрестностей — галактики Млечный Путь. Короче говоря, мы точка в бескрайнем космическом море.

Тем не менее Солнечная система остается относительно большим местом, в котором (пока) скрывается множество тайн. Мы только недавно начали плотно заниматься изучением скрытой природы нашего маленького мира. В плане изучения Солнечной системы мы едва ли оцарапали поверхность этого ящика.

Понимание Солнечной системы

За малым исключением, до эпохи современной астрономии лишь немногие люди или цивилизации понимали, что такое Солнечная система. Подавляющее большинство астрономических систем постулировало, что Земля — неподвижный объект, вокруг которого вращаются все известные небесные объекты. Кроме того, она существенно отличалась от других звездных объектов, которые считались эфирными или божественными по своей природе.

Хотя во времена античного и средневекового периода были некоторые греческие, арабские и азиатские астрономы, которые верили, что Вселенная гелиоцентрична (то есть что Земля и другие тела вращаются вокруг Солнца), только когда Николай Коперник разработал математическую предиктивную модель гелиоцентрической системы в 16 веке, эта идея получила широкое распространение.

Галилей (1564 – 1642) частенько показывал людям, как пользоваться телескопом и наблюдать за небом на площади Сан-Марко в Венеции. Учтите, в те времена не было адаптивной оптики.

В течение 17 века ученые вроде Галилео Галилея, Иоганна Кеплера и Исаака Ньютона разработали понимание физики, которое постепенно привело к принятию того, что Земля вращается вокруг Солнца. Развитие теорий вроде гравитации также привело к осознанию того, что другие планеты подчиняются тем же физическим законам, что и Земля.

Широкое распространение телескопов также привело к революции в астрономии. После открытия Галилеем спутников Юпитера в 1610 году, Кристиан Гюйгенс обнаружил, что и Сатурн обладает лунами в 1655 году. Также были обнаружены новые планеты (Уран и Нептун), кометы (комета Галлея) и пояс астероидов.

К 19 веку три наблюдения, сделанные тремя отдельными астрономами, определили истинную природу Солнечной системы и ее место во Вселенной. Первое сделал в 1839 году немецкий астроном Фридрих Бессель, успешно измеривший кажущийся сдвиг в позиции звезды, созданный движением Земли вокруг Солнца (звездный параллакс). Это не только подтвердило гелиоцентрическую моедль, но и показало гигантское расстояние между Солнцем и звездами.

В 1859 году Роберт Бунзен и Густав Кирхгоф (немецкие химик и физик) использовали недавно изобретенный спектроскоп для определения спектральной сигнатуры Солнца. Они обнаружили, что Солнце состоит из тех же элементов, что существуют на Земле, тем самым доказав, что твердь земная и твердь небесная сделаны из одной материи.

Затем отец Анджело Секки — итальянский астроном и директор Папского Григорианского университета — сравнил спектральную сигнатуру Солнца с сигнатурами других звезд и обнаружил, что те практически идентичны. Это убедительно показало, что наше Солнце состоит из тех же материалов, что и любая другая звезда во Вселенной.

Дальнейшие очевидные расхождения в орбитах внешних планет привели американского астронома Персиваля Лоуэлла к выводу, что за пределами Нептуна должна лежат «планета Х». После его смерти обсерватория Лоуэлла провела необходимые исследования, которые в конечном итоге привели Клайда Томбо к открытию Плутона в 1930 году.

В 1992 году астрономы Дэвид К. Джевитт из Гавайского университета и Джейн Луу из Массачусетского технологического института обнаружили транснептуновый объект (ТНО), известный как (15760) 1992 QB1. Он вошел в новую популяцию, известную как пояс Койпера, о котором долгое время говорили астрономы и который должен лежать на краю Солнечной системы.

Дальнейшее исследование пояса Койпера на рубеже веков привело к дополнительным открытиям. Открытие Эриды и другие «плутоидов» Майком Брауном, Чадом Трухильо, Давидом Рабиновичем и другими астрономами привело к суровой дискуссии между Международным астрономическим союзом и некоторыми астрономами на тему обозначения планет, больших и малых.

Структура и состав Солнечной системы

В ядре Солнечной системы расположено Солнце (звезда главной последовательности типа G2), которое окружено четырьмя планетами земной группы (внутренние планеты), главным поясом астероидов, четырьмя газовыми гигантами (внешние планеты), массивным полем небольших тел, простирающимся от 30 а. е. до 50 а. е. от Солнца (пояс Койпера) и сферическим облаком ледяных планетезималей, которое, как полагают, вытянулось на расстояние до 100 000 а. е. от Солнца (облако Оорта).

Солнце содержит 99,86% известной массы системы, и его гравитация влияет на всю систему. Большинство крупных объектов на орбите вокруг Солнца лежат вблизи плоскости орбиты Земли (эклиптики), и большинство тел и планет вращаются вокруг него в одном направлении (против часовой стрелки, если смотреть с северного полюса Земли). Планеты очень близки к эклиптике, тогда как кометы и объекты пояса Койпера часто находятся под большим углом к ней.

На четыре крупнейших вращающихся тела (газовые гиганты) приходится 99% оставшейся массы, причем на Юпитер и Сатурн в сумме приходится больше 90%. Остальные объекты Солнечной системы (включая четыре планеты земной группы, карликовые планеты, луны, астероиды и кометы) вместе составляют меньше 0,002% общей массы Солнечной системы.

Солнце и планеты

Иногда астрономы неформально делят эту структуру на отдельные регионы. Первый, внутренняя Солнечная система, включает четыре планеты земной группы и пояс астероидов. За ним лежит внешняя Солнечная система, которая включает четыре газовых гиганта. Между тем есть и крайние части Солнечной системы, которые считают отдельным регионом, содержащим транснептуновые объекты, то есть объекты за Нептуном.

Большинство планет Солнечной системы обладают собственными вторичными системами, вокруг них вращаются планетарные объекты — естественные спутники (луны). У четырех планет-гигантов также есть планетарные кольца — тонкие полосы мельчайших частиц, вращающихся в унисон. Большинство крупнейших естественных спутников находятся в синхронном вращении, будучи постоянно повернутыми одной стороной к своей планете.

Солнце, которое содержит почти всю материю Солнечной системы, на 98% состоит из водорода и гелия. Планеты земной группы внутренней Солнечной системы состоят в основном из силикатных пород, железа и никеля. За поясом астероидов планеты состоят в основном из газов (водорода, гелия) и льдов — метана, воды, аммиака, сероводорода и диоксида углерода.

Объекты подальше от Солнца состоят в основном из материалов с более низкими точками плавления. Ледяные вещества составляют большинство спутников планет-гигантов, а также Урана и Нептуна (поэтому иногда мы называем их «ледяными гигантами») и многочисленных объектов, лежащих за орбитой Нептуна.

Газы и льды считаются летучими веществами. Граница Солнечной системы, за которой эти летучие вещества конденсируются, известна как «снеговая линия», находится в 5 а. е. от Солнца. Объекты и планетезимали в поясе Койпера и облака Оорта состоят по большей части из этих материалов и камня.

Образование и эволюция Солнечной системы

Солнечная система образовалась 4,568 миллиарда лет назад в процессе гравитационного коллапса региона в гигантском молекулярном облаке из водорода, гелия и небольших количеств элементов потяжелее, синтезированных предыдущими поколениями звезд. Когда этот регион, который должен был стать Солнечной системой, коллапсировал, сохранение углового момента заставило его вращаться быстрее.

Центр, где собралась большая часть массы, начал становиться все горячее и горячее окружающего диска. По мере того как сжимающаяся туманность вращалась быстрее, она начала выравниваться в протопланетарный диск с горячей, плотной протозвездой в центре. Планеты образовались аккрецией этого диска, в котором пыль и газ стягивались вместе и объединялись, чтобы сформировать более крупные тела.

Из-за более высокой температуры кипения, только металлы и силикаты могут существовать в твердой форме близко к Солнцу и в конечном итоге образуют планеты земной группы — Меркурий, Венеру, Землю и Марс. Поскольку металлические элементы были лишь небольшой частью солнечной туманности, планеты земной группы не смогли стать очень большими.

В отличие от этого, планеты-гиганты (Юпитер, Сатурн, Уран и Нептун) образовались за точкой между орбитами Марса и Юпитера, где материалы были достаточно холодными, чтобы летучие ледовитые компоненты оставались твердыми (на снеговой линии).

Льды, которые сформировали эти планеты, были более многочисленны, чем металлы и силикаты, которые сформировали внутренние планеты земной группы, что позволило им расти достаточно массивными, чтобы захватить крупные атмосферы из водорода и гелия. Оставшийся мусор, который никогда не станет планетами, собрался в регионах вроде пояса астероида, пояса Койпера и облака Оорта.

За 50 миллионов лет давление и плотность водорода в центре протозвезды стали достаточно высокими, чтобы начался термоядерный синтез. Температура, скорость реакции, давление и плотность увеличивались, пока не было достигнуто гидростатическое равновесие.

В этот момент Солнце стало звездой главной последовательности. Солнечный ветер от Солнца создал гелиосферу и смел оставшиеся газ и пыль протопланетарного диска в межзвездное пространство, заканчивая процесс формирования планет.

Солнечная система будет оставаться практически такой же, какой мы ее знаем, пока водород в ядре Солнца не будет полностью преобразован в гелий. Это произойдет примерно через 5 миллиардов лет и ознаменует конец главной последовательности жизни Солнца. В это время ядро Солнца коллапсирует и выход энергии будет значительно больше, чем сейчас.

Наружные слои Солнца расширятся примерно в 260 раз шире текущего диаметра, и Солнце станет красным гигантом. Расширение Солнца, как ожидается, испарит Меркурий и Венеру и сделает Землю непригодной для жизни, поскольку обитаемая зона выйдет за орбиту Марса. В конце концов, ядро станет достаточно горячим, чтобы начался гелиевый синтез, Солнце еще немного пожжет гелий, но потом ядро станет сокращаться.

В этот момент внешние слои Солнца направятся в космос, оставив позади белый карлик — чрезвычайно плотный объект, который будет иметь половину изначальной массы Солнца, но по размерам будет с Землю. Выброшенные внешние слои сформируют планетарную туманность, вернув часть материала, сформировавшего Солнце, в межзвездное пространство.

Внутренняя Солнечная система

Во внутренней Солнечной системе мы находим «внутренние планеты» — Меркурий, Венеру, Землю и Марс — которые названы так потому, что вращаются ближе к Солнцу. В дополнение к своей близости, эти планеты имеют ряд ключевых отличий от других планет в Солнечной системе.

Для начала: внутренние планеты твердые и землистые, состоят в основном из силикатов и металлов, тогда как внешние планеты — газовые гиганты. Внутренние планеты расположены ближе друг к другу, чем их внешние коллеги. Радиус всей это области меньше дистанции между орбитами Юпитера и Сатурна.

Как правило, внутренние планеты меньше и плотнее своих коллег и обладают небольшим числом лун. Внешние планеты имеют десятки спутников и кольца из льда и камня.

Внутренние планеты земной группы состоят по большей части из огнеупорных минералов вроде силикатов, которые образуют их кору и мантию, и металлов — железа и никеля — которые лежат в ядре. Три из четырех внутренних планет (Венера, Земля и Марс) имеют достаточно существенные атмосферы, чтобы формировать погоду. Все усеяны ударными кратерами и обладают поверхностной тектоникой, рифтовыми долинами и вулканами.

Из внутренних планет Меркурий является ближайшей к нашему Солнцу и наименьшей из планет земной группы. Его магнитное поле составляет лишь 1% от земного, и очень тонкая атмосфера диктует температуру в 430 градусов по Цельсию днем и -187 ночью, поскольку атмосфера не может удержать тепло. Он не имеет спутников и состоит по большей части из железа и никеля. Меркурий — одна из самых плотных планет Солнечной системы.

Венера, которая по размерам примерно с Землю, имеет плотную токсичную атмосферу, которая удерживает тепло и делает планету самой горячей в Солнечной системе. Ее атмосфера состоит на 96% из углекислого газа, а также азота и нескольких других газов. Плотные облака в пределах атмосферы Венеры состоят из серной кислоты и других агрессивных соединений, с малым добавлением воды. Большая часть поверхности Венеры отмечена вулканами и глубокими каньонами — самый большой свыше 6400 километров длиной.

Земля является третьей внутренней планетой и лучше всех изученной. Из четырех планет земной группы Земля самая крупная и единственная обладает жидкой водой, необходимой для жизни. Атмосфера Земли защищает планету от опасного излучения и помогает удержать ценный солнечный свет и тепло под оболочкой, что также необходимо для существования жизни.

Как и другие планеты земной группы, Земля имеет каменистую поверхность с горами и каньонами и тяжелое металлическое ядро. Атмосфера Земли содержит водяной пар, который помогает смягчить суточные температуры. Как и Меркурий, Земля обладает внутренним магнитным полем. А наша Луна, единственный спутник, состоит из смеси различных пород и минералов.

Марс — четвертая и последняя внутренняя планета, известная также как «Красная планета», благодаря окисленным богатым железом материалам, лежащим на поверхности планеты. Марс также обладает набором интереснейших свойств поверхности. На планете расположилась крупнейшая в Солнечной системе гора (Олимп) высотой в 21 229 метров над поверхностью и гигантский каньон Valles Marineris в 4000 км длиной и глубиной до 7 км.

Большая часть поверхности Марса очень стара и заполнена кратерами, но есть и геологически новые зоны. На марсианских полюсах расположены полярные шапки, которые уменьшаются в размерах во время марсианских весны и лета. Марс менее плотный, чем Земля, и располагает слабым магнитным полем, что говорит скорее о твердом ядре, нежели о жидком.

Тонкая атмосфера Марса привела некоторых астрономов к мысли о том, что на поверхности планеты существовала жидкая вода, только испарилась в космос. Планета имеет две небольшие луны — Фобос и Деймос.

Внешняя Солнечная система

Внешние планеты (иногда называемые троянскими планетами, планетами-гигантами или газовыми гигантами) — это огромные планеты, окутанные газом, имеющие кольца и множество спутников. Несмотря на свои размеры, только две из них видны без телескопов: Юпитер и Сатурн. Уран и Нептун стали первыми планетами, обнаруженными с древних времен, которые показали астрономам, что Солнечная система намного больше, чем думали.

Юпитер — крупнейшая планета нашей Солнечной системы, которая вращается очень быстро (10 земных часов) относительно своей орбиты вокруг Солнца (прохождение которой занимает 12 земных лет). Ее плотная атмосфера состоит из водорода и гелия, возможно, окружая земное ядро размером с Землю. Планета имеет десятки лун, несколькими слабыми кольцами и Большим Красным Пятном — бушующим штормом, который держится уже лет 400.

Сатурн известен своей выдающейся системой колец — семь известных колец с четко определенными разделениями и пробелами между ними. Как образовались кольца, пока не совсем понятно. Также планета имеет десятки спутников. Ее атмосфера состоит по большей части из водорода и гелия, и вращается она довольно быстро (10,7 земных часов) относительно своего времени вращения вокруг Солнца (29 земных лет).

Уран был впервые обнаружен Уильямом Гершелем в 1781 году. День планеты протекает примерно на 17 земных часов, а одна орбита вокруг Солнца занимает 84 земных года. Уран содержит воду, метан, аммиак, водород и гелий вокруг твердого ядра. Также у планеты десятки спутников и слабая кольцевая система. Единственный аппарат, который посетил планету, это «Вояджер-2» в 1986 году.

Нептун — далекая планета, содержащая воду, аммиак, метан, водород и гелий и возможное ядро размером с Землю — имеет более десятка спутников и шесть колец. Космический аппарат «Вояджер-2» также посетил эту планету и ее систему в 1989 году во время прохождения по внешней Солнечной системе.

Транснептуновый регион Солнечной системы

В поясе Койпера было обнаружено более тысячи объектов; также предполагают, что там есть порядка 100 000 объектов крупнее 100 км в диаметре. Учитывая их малый размер и чрезвычайное расстояние до Земли, химический состав объектов пояса Койпера довольно трудно определить.

Но спектрографические исследования региона показали, что его члены по большей части состоят из льдов: смеси легких углеводородов (вроде метана), аммиака и водного льда — таким же составом обладают кометы. Первоначальные исследования также подтвердили широкий диапазон цветов у объектов пояса Койпера, от нейтрального серого до насыщенного красного.

Это говорит о том, что их поверхности состоят из широкого ряда соединений, от грязных льдов до углеводородов. В 1996 году Роберт Браун получил спектроскопические данные о KBO 1993 SC, которые показали, что состав поверхности объекта чрезвычайно похож на плутонов (и спутника Нептуна Тритон) тем, что обладает большим количеством метанового льда.

Водный лед был обнаружен у нескольких объектов пояса Койпера, включая 1996 TO66, 38628 Huya и 2000 Varuna. В 2004 году Майк Браун и др. определили существование кристаллической воды и гидрата аммиака у одного из крупнейших известных объектов Койпера 50000 Quaoar (Квавар). Оба этих вещества были уничтожены в процессе жизни Солнечной системы, а, значит, поверхность Квавара недавно изменилась вследствие тектонической активности или падения метеорита.

Компания Плутона в поясе Койпера достойна упоминания. Квавар, Макемаке, Хаумеа, Эрида и Орк — все это крупные ледяные тела пояса Койпера, у некоторых из них даже есть спутники. Они чрезвычайно далеки, но все же находятся в пределах досягаемости.

Облако Оорта и дальние регионы

Полагают, что облако Оорта простирается от 2000-5000 а. е. до 50 000 а. е. от Солнца, хотя некоторые продлевают этот диапазон до 200 000 а. е. Это облако, как полагают, состоит из двух регионов — сферического внешнего облака Оорта (в пределах 20 000 – 50 000 а. е.) и дискообразного внутреннего облака Оорта (2000 – 20 000 а. е.).

Внешнее облако Оорта может иметь триллионы объектов больше 1 км и миллиарды — больше 20 км в диаметре. Его общая масса неизвестна, но — при условии, что комета Галлея является типичным представлением внешних объектов облака Оорта, — можно очертить ее грубо в 3×10^25 килограммов, или в пять Земель.

На основании анализа последних комет, подавляющее большинство объектов облака Оорта состоит из летучих ледовитых веществ — воды, метана, этана, моноксида углерода, цианистого водорода и аммиака. Появление астероидов, как считают, объясняется облаком Оорта — в популяции объектов может быть 1-2% астероидов.

Первые оценки поместили их массу в рамки 380 земных масс, но расширенное знание распределения комет с длинных периодов понизило эти показатели. Масса внутреннего облака Оорта пока остается не рассчитанной. Содержание пояса Койпера и облака Оорта называется транснептуновыми объектами, поскольку объекты обоих регионов обладают орбитами, которые дальше от Солнца, чем орбита Нептуна.

Исследование Солнечной системы

Наши знания о Солнечной системе серьезно расширились из-за появления автоматических роботизированных космических аппаратов, спутников и роботов. Начиная с середины 20 века у нас была так называемая «космическая эра», когда пилотируемые и беспилотиные космические аппараты начали исследовать планеты, астероиды и кометы внутренней и внешней Солнечной системы.

Все планеты Солнечной системы были посещены в разной степени аппаратами, запущенными с Земли. В процессе этих беспилотных миссий люди смогли получить фотографии планет. Некоторые миссии позволили даже «попробовать» почву и атмосферу.

«Спутник-1»

Первым искусственным объектом, отправленным в космос, был советский «Спутник-1» в 1957 году, успешно покруживший вокруг Земли и собравший информацию о плотности верхних слоев атмосферы и ионосферы. Американский зонд Explorer 6, запущенный в 1959 году, был первым спутником, сделавшим снимки Земли из космоса.

Роботизированные космические аппараты также выявили много значимой информации об атмосферных, геологических и поверхностных особенностях планеты. Первым успешным зондом, пролетевшим мимо другой планеты, был советский был зонд «Луна-1», который ускорился с помощью Луны в 1959 году. Программа Mariner привела к множеству успешных облетов планет, посещению зондом Mariner 2 Венеры в 1962 году, Mariner 4 — Марса в 1965 году и Mariner 10 — Меркурия в 1974 году.

К 1970-м годам были посланы зонды и к другим планетам, начиная с миссии «Пионера-10» к Юпитеру в 1973 году и «Пионера-11» к Сатурну к 1979 году. Зонды «Вояджер» провели грандиозный тур по другим планетам после запуска в 1977 году, оба зонда прошли Юпитер в 1979 году и Сатурн в 1980-1981. «Вояджер-2» затем близко подошел к Урану в 1986 году и к Нептуну в 1989 году.

Запущенный 19 января 2006 года, зонд «Новые горизонты» стал первым искусственным космическим аппаратом, который будет исследовать пояс Койпера. В июле 2015 года эта беспилотная миссия пролетела мимо Плутона. В ближайшие годы зонд займется изучением ряда объектов пояса Койпера.

Орбитальные аппараты, роверы и спускаемые аппараты начали разворачиваться на других планетах Солнечной системы к 60-м годам. Первым стал советский спутник «Луна-10», отправленный на лунную орбиту в 1966 году. За ним последовал 1971 год с развертыванием космического зонда Mariner 9, который облетел Марс, и советский зонд «Венера-9», который вышел на орбиту Венеры в 1975 году.

Зонд Galileo стал первым искусственным спутником, вышедшим на орбиту внешней планеты, когда достиг Юпитера в 1995 году; за ним последовала миссия «Кассини-Гюйгенс» на Сатурн в 2004 году. Меркурий и Веста были исследованы в 2011 году зондами MESSENGER и Dawn соответственно, после чего Dawn посетил орбиту карликовой планеты Цереры в 2015 году.

Первый зонд, который приземлился на другое тело Солнечной системы, был советский «Луна-2», который упал на Луну в 1959 году. С тех пор зонды высаживались или падали на поверхности Венеры в 1966 году («Венера-3»), Марса в 1971 году («Марс-3» и «Викинг-1» в 1976 году), астероид Эрос 433 в 2001 году (NEAR Shoemaker) и спутник Сатурна Титан («Гюйгенс») и комету Темпеля 1 (Deep Impact) в 2005 году.

Ровер «Кьюриосити» сделал этот мозаичный автопортрет с помощью камеры MAHLI, находясь на плоской осадочной породе.

На сегодняшний день только два мира Солнечной системы, Луна и Марс, были посещены передвижными роверами. Первым роботизированным ровером, который приземлился на другое тело, был советский «Луноход-1», который приземлился на Луну в 1970 году. В 1997 году на Марс высадился «Соджорнер», который проехал по поверхности планеты 500 метров, за ним последовали «Спирит» (2004 год), «Оппортьюнити» (2004 год), «Кьюриосити» (2012 год).

Пилотируемые миссии в космос начались в начале 50-х, и у двух сверхдержав, США и СССР, которые были завязаны в космической гонке, были две точки фокуса. Советский Союз сосредоточился на программе «Восток», которая включала отправку пилотируемых космических капсул на орбиту.

Первая миссия — «Восток-1» — состоялась 12 апреля 1961 года, первый человек — Юрий Гагарин — вышел в космос. 6 июня 1963 года Советский Союз также отправил первую женщину в космос — Валентину Терешкову — в рамках миссии «Восток-6».

В США проект «Меркурий» был инициирован с той же целью вывода капсулы с экипажем на орбиту. 5 мая 1961 года астронавт Алан Шепард вышел в космос с миссией Freedon 7 и стал первым американцем в космосе.

После того как программы «Восток» и «Меркурий» завершились, в центре внимания обоих государств и космических программ оказалось развитие космического аппарата на два-три человека, а также длительные космические полеты и внекорабельная деятельность (EVA), то есть, выход космонавтов в космос в автономных скафандрах.

В результате этого в СССР и США начали развивать собственные программы «Восход» и «Джемини». Для СССР в это входила разработка капсулы на два-три человека, а «Джемини» сосредоточилась на развитии и экспертной поддержке, необходимых для возможного пилотируемого полета на Луну.

Эти последние усилия привели 21 июля 1969 года к миссии «Аполлон-11», когда астронавты Нил Армстронг и Базз Олдрин стали первыми людьми, которые ходили по Луне. В рамках этой программы были осуществлены еще пять лунных высадок, и программа принесла множество научных посылок с Земли.

После высадки на Луну центр внимания американских и советских программ начал смещаться к развитию космических станций и космических аппаратов многоразового использования. Для Советов это вылилось в первые пилотируемые орбитальные станции, посвященные космическим научным исследованиям и военной разведке, известные как космические станции «Салют» и «Алмаз».

Первой орбитальной станцией, которая вместила более одного экипажа, стала «Скайлэб» NASA, она успешно вместила три экипажа с 1973 по 1974 годы. Первым настоящим поселением людей в космосе стала советская станция «Мир», которую последовательно занимали в течение десяти лет, с 1989 по 1999 годы. В 2001 году ее закрыли, а ее последователь, Международная космическая станция, с тех пор поддерживает постоянное присутствие людей в космосе.

Космические шаттлы США, дебютировавшие в 1981 году, стали и остаются на данный момент единственными многоразовыми космическими аппаратами, которые успешно осуществили множество орбитальных полетов. Пять построенных шаттлов («Атлантис», «Индевор», «Дискавери», «Челленджер», «Колумбия» и «Энтерпрайз») налетали в сумме 121 миссию, пока в 2011 программу не закрыли.

За время своей истории функционирования два таких аппарата погибли в катастрофах. Это были катастрофа «Челленджера», который взорвался на взлете 28 января 1986 года, и «Колумбия», который развалился при повторном входе в атмосферу 1 февраля 2003 года.

Что было дальше, вы прекрасно знаете. Пик 60-х сменился непродолжительным исследованием Солнечной системы и, в конце концов, упадком. Возможно, очень скоро мы получим продолжение.

Вся полученная в ходе миссий информация о геологических явлениях или других планетах — о горах и кратерах, например — а также об их погодных и метеорологических феноменах (облаках, пыльных бурях и ледяных шапках) привела к осознанию того, что другие планеты переживают в сущности те же явления, что и Земля. Кроме того, все это помогло ученым больше узнать об истории Солнечной системы и ее образовании.

Поскольку наше исследование внутренней и внешней Солнечной системы постоянно набирает обороты, изменился и наш подход к категоризации планет. Наша текущая модель Солнечной системы включает восемь планет (четыре земного типа, четыре газовых гиганта), четыре карликовых планеты и растущее число транснептуновых объектов, которые еще только предстоит обозначить.

Учитывая огромные размеры и сложность Солнечной системы, ее исследование в полных деталях займет очень много лет. Будет ли оно того стоить? Безусловно.

hi-news.ru

Отличия в движении внутренних и внешних планет

 

Планеты Солнечной системы подразделяются на внутренние (в которых орбиты расположены внутри орбиты Земли) и внешние (орбиты больше орбиты Земли). Для различных исследований легко доступны Венера и Меркурий (внутренние планеты) и Юпитер, Марс, Сатурн (внешние планеты).

 

Держать под наблюдением внутреннюю планету с Земли, вы заметите такие моменты: соединение, где планета расположена за Солнцем и не видна. Через определенное время планета слева из-за Солнца выходит и делается доступной для созерцаний в лучах вечерней зари на западе.

 

Мало-помалу планета способна достичь самого большого удаления от Солнца, при которой условие вечерней видимости наиболее благоприятно, а потом начинает приближаться к Солнцу и вновь соединяется с Солнцем, разыскиваясь пред ним. Если бы плоскость ее орбиты совпадала с плоской орбитой Земли, то на данный момент планета спроектировалась бы на диске Солнца и смогла стать видимой в виде черного пятна. Обыкновенно планета постигает ниже или выше Солнца и в соединение не вступает.

 

После соединений планета попадает с правой стороны от Солнца, доходит до западной элонгации, проходит фазу от тесного серпа до диска, и видима по утрам на востоке. Потом движение меняется в обратную сторону, справа - налево, когда планета передвигается к Солнцу, убавляясь в размерах угла, и приближается к полной фазе.

 

Планета вслед за выходом из-за Солнца видима в совершенной фазе, а в восточной элонгации видима только половина из всего диска освещенного, потом же фаза уменьшается, однако угловой размер серпа увеличивается, поскольку планета близится к Земле.

 

Внутренняя планета не отходит вдалеке от Солнца и вечно наблюдается в лучах вечерней или утренней зари. Величина элонгации Меркурия не очень велика - не более двадцати восьми градусов по Цельсию, прочее время Меркурий все время прячется возле Солнца, и видим только рядом с элонгацией.

 

Венера способна отходить от Солнца на сорок пять – сорок восемь градусов и легко отмечается в виде вечерней или утренней звезды в качестве самого яркого объекта на небе. Приблизительно через 1,5 года положение Венеры повторится.

 

Внешние планеты способны отходить от Солнца на любом расстоянии, и всегда видимы в совершенной фазе. В то время, когда внешняя планета после захода Солнца видна на западе, она способна переместиться посреди звезд прямым движением подобно Солнцу.

 

Смотрите также:

 
Парад планет

Видимый парад планет - это планетная конфигурация, когда 5 очень красочных планет (Венера, Меркурий, Юпитер, Сатурн и Марс) в движении по небу подходят друг дружке на очень близкое расстояние и становится видимыми в 1 время в незначительном секторе небосвода.Чтобы все 5 ярких планет стали видимыми в одно и то же время...

 
 
Общая характеристика спутников планет гигантов

Системы спутников Юпитера напоминают Солнечную систему в миниатюре. 4 спутника, которые открыл Галилей, названы галилеевыми спутниками. Это Европа, Ио, Каллисто и Ганимед. Самым большим из них является Ганимед, поскольку он по размерам превзошел Меркурий (однако в 2 раза уступает по массе этой планете)...

 
 
Характеристика планет-гигантов

В отличие от планеты земных групп, наделенных мантией, корой и ядром, на Юпитере есть газообразный водород, который входит в состав атмосферы, и может переходить в жидкую, а потом в твердую фазу. Появление этих агрегатных противоестественных состояний водорода связано с острым повышением давления по мере его погружения в глубину...

 

space-my.ru

Все, что нужно знать о нашей Солнечной системе (12 фото)

Вместе с праздником, который нам принесла серия статей о том, как SpaceX собирается колонизировать Марс, мы совсем забыли рассказать о месте, где все это будет происходить: о Солнечной системе. По правде говоря, очень немногие люди отдают себе полный отчет в том, как устроена наша планетарная система. И поскольку мы вот-вот окажемся в эпохе, когда космические корабли будут бороздить космические просторы (без шуток), пора заниматься космическим ликбезом.

Вселенная — очень большое место, в котором мы ютимся в небольшом уголочке. Он называется Солнечной системой и является не только крошечной долей известной нам Вселенной, но и очень небольшой частью наших галактических окрестностей — галактики Млечный Путь. Короче говоря, мы точка в бескрайнем космическом море.

Тем не менее Солнечная система остается относительно большим местом, в котором (пока) скрывается множество тайн. Мы только недавно начали плотно заниматься изучением скрытой природы нашего маленького мира. В плане изучения Солнечной системы мы едва ли оцарапали поверхность этого ящика.

Понимание Солнечной системы

За малым исключением, до эпохи современной астрономии лишь немногие люди или цивилизации понимали, что такое Солнечная система. Подавляющее большинство астрономических систем постулировало, что Земля — неподвижный объект, вокруг которого вращаются все известные небесные объекты. Кроме того, она существенно отличалась от других звездных объектов, которые считались эфирными или божественными по своей природе.

Хотя во времена античного и средневекового периода были некоторые греческие, арабские и азиатские астрономы, которые верили, что Вселенная гелиоцентрична (то есть что Земля и другие тела вращаются вокруг Солнца), только когда Николай Коперник разработал математическую предиктивную модель гелиоцентрической системы в 16 веке, эта идея получила широкое распространение.

Галилей (1564 – 1642) частенько показывал людям, как пользоваться телескопом и наблюдать за небом на площади Сан-Марко в Венеции. Учтите, в те времена не было адаптивной оптики.

В течение 17 века ученые вроде Галилео Галилея, Иоганна Кеплера и Исаака Ньютона разработали понимание физики, которое постепенно привело к принятию того, что Земля вращается вокруг Солнца. Развитие теорий вроде гравитации также привело к осознанию того, что другие планеты подчиняются тем же физическим законам, что и Земля.

Широкое распространение телескопов также привело к революции в астрономии. После открытия Галилеем спутников Юпитера в 1610 году, Кристиан Гюйгенс обнаружил, что и Сатурн обладает лунами в 1655 году. Также были обнаружены новые планеты (Уран и Нептун), кометы (комета Галлея) и пояс астероидов.

К 19 веку три наблюдения, сделанные тремя отдельными астрономами, определили истинную природу Солнечной системы и ее место во Вселенной. Первое сделал в 1839 году немецкий астроном Фридрих Бессель, успешно измеривший кажущийся сдвиг в позиции звезды, созданный движением Земли вокруг Солнца (звездный параллакс). Это не только подтвердило гелиоцентрическую моедль, но и показало гигантское расстояние между Солнцем и звездами.

В 1859 году Роберт Бунзен и Густав Кирхгоф (немецкие химик и физик) использовали недавно изобретенный спектроскоп для определения спектральной сигнатуры Солнца. Они обнаружили, что Солнце состоит из тех же элементов, что существуют на Земле, тем самым доказав, что твердь земная и твердь небесная сделаны из одной материи.

Затем отец Анджело Секки — итальянский астроном и директор Папского Григорианского университета — сравнил спектральную сигнатуру Солнца с сигнатурами других звезд и обнаружил, что те практически идентичны. Это убедительно показало, что наше Солнце состоит из тех же материалов, что и любая другая звезда во Вселенной.

Дальнейшие очевидные расхождения в орбитах внешних планет привели американского астронома Персиваля Лоуэлла к выводу, что за пределами Нептуна должна лежат «планета Х». После его смерти обсерватория Лоуэлла провела необходимые исследования, которые в конечном итоге привели Клайда Томбо к открытию Плутона в 1930 году.

В 1992 году астрономы Дэвид К. Джевитт из Гавайского университета и Джейн Луу из Массачусетского технологического института обнаружили транснептуновый объект (ТНО), известный как (15760) 1992 QB1. Он вошел в новую популяцию, известную как пояс Койпера, о котором долгое время говорили астрономы и который должен лежать на краю Солнечной системы.

Дальнейшее исследование пояса Койпера на рубеже веков привело к дополнительным открытиям. Открытие Эриды и другие «плутоидов» Майком Брауном, Чадом Трухильо, Давидом Рабиновичем и другими астрономами привело к суровой дискуссии между Международным астрономическим союзом и некоторыми астрономами на тему обозначения планет, больших и малых.

Структура и состав Солнечной системы

В ядре Солнечной системы расположено Солнце (звезда главной последовательности типа G2), которое окружено четырьмя планетами земной группы (внутренние планеты), главным поясом астероидов, четырьмя газовыми гигантами (внешние планеты), массивным полем небольших тел, простирающимся от 30 а. е. до 50 а. е. от Солнца (пояс Койпера) и сферическим облаком ледяных планетезималей, которое, как полагают, вытянулось на расстояние до 100 000 а. е. от Солнца (облако Оорта).

Солнце содержит 99,86% известной массы системы, и его гравитация влияет на всю систему. Большинство крупных объектов на орбите вокруг Солнца лежат вблизи плоскости орбиты Земли (эклиптики), и большинство тел и планет вращаются вокруг него в одном направлении (против часовой стрелки, если смотреть с северного полюса Земли). Планеты очень близки к эклиптике, тогда как кометы и объекты пояса Койпера часто находятся под большим углом к ней.

На четыре крупнейших вращающихся тела (газовые гиганты) приходится 99% оставшейся массы, причем на Юпитер и Сатурн в сумме приходится больше 90%. Остальные объекты Солнечной системы (включая четыре планеты земной группы, карликовые планеты, луны, астероиды и кометы) вместе составляют меньше 0,002% общей массы Солнечной системы.

Солнце и планеты

Иногда астрономы неформально делят эту структуру на отдельные регионы. Первый, внутренняя Солнечная система, включает четыре планеты земной группы и пояс астероидов. За ним лежит внешняя Солнечная система, которая включает четыре газовых гиганта. Между тем есть и крайние части Солнечной системы, которые считают отдельным регионом, содержащим транснептуновые объекты, то есть объекты за Нептуном.

Большинство планет Солнечной системы обладают собственными вторичными системами, вокруг них вращаются планетарные объекты — естественные спутники (луны). У четырех планет-гигантов также есть планетарные кольца — тонкие полосы мельчайших частиц, вращающихся в унисон. Большинство крупнейших естественных спутников находятся в синхронном вращении, будучи постоянно повернутыми одной стороной к своей планете.

Солнце, которое содержит почти всю материю Солнечной системы, на 98% состоит из водорода и гелия. Планеты земной группы внутренней Солнечной системы состоят в основном из силикатных пород, железа и никеля. За поясом астероидов планеты состоят в основном из газов (водорода, гелия) и льдов — метана, воды, аммиака, сероводорода и диоксида углерода.

Объекты подальше от Солнца состоят в основном из материалов с более низкими точками плавления. Ледяные вещества составляют большинство спутников планет-гигантов, а также Урана и Нептуна (поэтому иногда мы называем их «ледяными гигантами») и многочисленных объектов, лежащих за орбитой Нептуна.

Газы и льды считаются летучими веществами. Граница Солнечной системы, за которой эти летучие вещества конденсируются, известна как «снеговая линия», находится в 5 а. е. от Солнца. Объекты и планетезимали в поясе Койпера и облака Оорта состоят по большей части из этих материалов и камня.

Образование и эволюция Солнечной системы

Солнечная система образовалась 4,568 миллиарда лет назад в процессе гравитационного коллапса региона в гигантском молекулярном облаке из водорода, гелия и небольших количеств элементов потяжелее, синтезированных предыдущими поколениями звезд. Когда этот регион, который должен был стать Солнечной системой, коллапсировал, сохранение углового момента заставило его вращаться быстрее.

Центр, где собралась большая часть массы, начал становиться все горячее и горячее окружающего диска. По мере того как сжимающаяся туманность вращалась быстрее, она начала выравниваться в протопланетарный диск с горячей, плотной протозвездой в центре. Планеты образовались аккрецией этого диска, в котором пыль и газ стягивались вместе и объединялись, чтобы сформировать более крупные тела.

Из-за более высокой температуры кипения, только металлы и силикаты могут существовать в твердой форме близко к Солнцу и в конечном итоге образуют планеты земной группы — Меркурий, Венеру, Землю и Марс. Поскольку металлические элементы были лишь небольшой частью солнечной туманности, планеты земной группы не смогли стать очень большими.

В отличие от этого, планеты-гиганты (Юпитер, Сатурн, Уран и Нептун) образовались за точкой между орбитами Марса и Юпитера, где материалы были достаточно холодными, чтобы летучие ледовитые компоненты оставались твердыми (на снеговой линии).

Льды, которые сформировали эти планеты, были более многочисленны, чем металлы и силикаты, которые сформировали внутренние планеты земной группы, что позволило им расти достаточно массивными, чтобы захватить крупные атмосферы из водорода и гелия. Оставшийся мусор, который никогда не станет планетами, собрался в регионах вроде пояса астероида, пояса Койпера и облака Оорта.

За 50 миллионов лет давление и плотность водорода в центре протозвезды стали достаточно высокими, чтобы начался термоядерный синтез. Температура, скорость реакции, давление и плотность увеличивались, пока не было достигнуто гидростатическое равновесие.

В этот момент Солнце стало звездой главной последовательности. Солнечный ветер от Солнца создал гелиосферу и смел оставшиеся газ и пыль протопланетарного диска в межзвездное пространство, заканчивая процесс формирования планет.

Солнечная система будет оставаться практически такой же, какой мы ее знаем, пока водород в ядре Солнца не будет полностью преобразован в гелий. Это произойдет примерно через 5 миллиардов лет и ознаменует конец главной последовательности жизни Солнца. В это время ядро Солнца коллапсирует и выход энергии будет значительно больше, чем сейчас.

Наружные слои Солнца расширятся примерно в 260 раз шире текущего диаметра, и Солнце станет красным гигантом. Расширение Солнца, как ожидается, испарит Меркурий и Венеру и сделает Землю непригодной для жизни, поскольку обитаемая зона выйдет за орбиту Марса. В конце концов, ядро станет достаточно горячим, чтобы начался гелиевый синтез, Солнце еще немного пожжет гелий, но потом ядро станет сокращаться.

В этот момент внешние слои Солнца направятся в космос, оставив позади белый карлик — чрезвычайно плотный объект, который будет иметь половину изначальной массы Солнца, но по размерам будет с Землю. Выброшенные внешние слои сформируют планетарную туманность, вернув часть материала, сформировавшего Солнце, в межзвездное пространство.

Внутренняя Солнечная система

Во внутренней Солнечной системе мы находим «внутренние планеты» — Меркурий, Венеру, Землю и Марс — которые названы так потому, что вращаются ближе к Солнцу. В дополнение к своей близости, эти планеты имеют ряд ключевых отличий от других планет в Солнечной системе.

Для начала: внутренние планеты твердые и землистые, состоят в основном из силикатов и металлов, тогда как внешние планеты — газовые гиганты. Внутренние планеты расположены ближе друг к другу, чем их внешние коллеги. Радиус всей это области меньше дистанции между орбитами Юпитера и Сатурна.

Как правило, внутренние планеты меньше и плотнее своих коллег и обладают небольшим числом лун. Внешние планеты имеют десятки спутников и кольца из льда и камня.

Внутренние планеты земной группы состоят по большей части из огнеупорных минералов вроде силикатов, которые образуют их кору и мантию, и металлов — железа и никеля — которые лежат в ядре. Три из четырех внутренних планет (Венера, Земля и Марс) имеют достаточно существенные атмосферы, чтобы формировать погоду. Все усеяны ударными кратерами и обладают поверхностной тектоникой, рифтовыми долинами и вулканами.

Из внутренних планет Меркурий является ближайшей к нашему Солнцу и наименьшей из планет земной группы. Его магнитное поле составляет лишь 1% от земного, и очень тонкая атмосфера диктует температуру в 430 градусов по Цельсию днем и -187 ночью, поскольку атмосфера не может удержать тепло. Он не имеет спутников и состоит по большей части из железа и никеля. Меркурий — одна из самых плотных планет Солнечной системы.

Венера, которая по размерам примерно с Землю, имеет плотную токсичную атмосферу, которая удерживает тепло и делает планету самой горячей в Солнечной системе. Ее атмосфера состоит на 96% из углекислого газа, а также азота и нескольких других газов. Плотные облака в пределах атмосферы Венеры состоят из серной кислоты и других агрессивных соединений, с малым добавлением воды. Большая часть поверхности Венеры отмечена вулканами и глубокими каньонами — самый большой свыше 6400 километров длиной.

Земля является третьей внутренней планетой и лучше всех изученной. Из четырех планет земной группы Земля самая крупная и единственная обладает жидкой водой, необходимой для жизни. Атмосфера Земли защищает планету от опасного излучения и помогает удержать ценный солнечный свет и тепло под оболочкой, что также необходимо для существования жизни.

Как и другие планеты земной группы, Земля имеет каменистую поверхность с горами и каньонами и тяжелое металлическое ядро. Атмосфера Земли содержит водяной пар, который помогает смягчить суточные температуры. Как и Меркурий, Земля обладает внутренним магнитным полем. А наша Луна, единственный спутник, состоит из смеси различных пород и минералов.

Марс — четвертая и последняя внутренняя планета, известная также как «Красная планета», благодаря окисленным богатым железом материалам, лежащим на поверхности планеты. Марс также обладает набором интереснейших свойств поверхности. На планете расположилась крупнейшая в Солнечной системе гора (Олимп) высотой в 21 229 метров над поверхностью и гигантский каньон Valles Marineris в 4000 км длиной и глубиной до 7 км.

Большая часть поверхности Марса очень стара и заполнена кратерами, но есть и геологически новые зоны. На марсианских полюсах расположены полярные шапки, которые уменьшаются в размерах во время марсианских весны и лета. Марс менее плотный, чем Земля, и располагает слабым магнитным полем, что говорит скорее о твердом ядре, нежели о жидком.

Тонкая атмосфера Марса привела некоторых астрономов к мысли о том, что на поверхности планеты существовала жидкая вода, только испарилась в космос. Планета имеет две небольшие луны — Фобос и Деймос.

Внешняя Солнечная система

Внешние планеты (иногда называемые троянскими планетами, планетами-гигантами или газовыми гигантами) — это огромные планеты, окутанные газом, имеющие кольца и множество спутников. Несмотря на свои размеры, только две из них видны без телескопов: Юпитер и Сатурн. Уран и Нептун стали первыми планетами, обнаруженными с древних времен, которые показали астрономам, что Солнечная система намного больше, чем думали.

Юпитер — крупнейшая планета нашей Солнечной системы, которая вращается очень быстро (10 земных часов) относительно своей орбиты вокруг Солнца (прохождение которой занимает 12 земных лет). Ее плотная атмосфера состоит из водорода и гелия, возможно, окружая земное ядро размером с Землю. Планета имеет десятки лун, несколькими слабыми кольцами и Большим Красным Пятном — бушующим штормом, который держится уже лет 400.

Сатурн известен своей выдающейся системой колец — семь известных колец с четко определенными разделениями и пробелами между ними. Как образовались кольца, пока не совсем понятно. Также планета имеет десятки спутников. Ее атмосфера состоит по большей части из водорода и гелия, и вращается она довольно быстро (10,7 земных часов) относительно своего времени вращения вокруг Солнца (29 земных лет).

Уран был впервые обнаружен Уильямом Гершелем в 1781 году. День планеты протекает примерно на 17 земных часов, а одна орбита вокруг Солнца занимает 84 земных года. Уран содержит воду, метан, аммиак, водород и гелий вокруг твердого ядра. Также у планеты десятки спутников и слабая кольцевая система. Единственный аппарат, который посетил планету, это «Вояджер-2» в 1986 году.

Нептун — далекая планета, содержащая воду, аммиак, метан, водород и гелий и возможное ядро размером с Землю — имеет более десятка спутников и шесть колец. Космический аппарат «Вояджер-2» также посетил эту планету и ее систему в 1989 году во время прохождения по внешней Солнечной системе.

Транснептуновый регион Солнечной системы

В поясе Койпера было обнаружено более тысячи объектов; также предполагают, что там есть порядка 100 000 объектов крупнее 100 км в диаметре. Учитывая их малый размер и чрезвычайное расстояние до Земли, химический состав объектов пояса Койпера довольно трудно определить.

Но спектрографические исследования региона показали, что его члены по большей части состоят из льдов: смеси легких углеводородов (вроде метана), аммиака и водного льда — таким же составом обладают кометы. Первоначальные исследования также подтвердили широкий диапазон цветов у объектов пояса Койпера, от нейтрального серого до насыщенного красного.

Это говорит о том, что их поверхности состоят из широкого ряда соединений, от грязных льдов до углеводородов. В 1996 году Роберт Браун получил спектроскопические данные о KBO 1993 SC, которые показали, что состав поверхности объекта чрезвычайно похож на плутонов (и спутника Нептуна Тритон) тем, что обладает большим количеством метанового льда.

Водный лед был обнаружен у нескольких объектов пояса Койпера, включая 1996 TO66, 38628 Huya и 2000 Varuna. В 2004 году Майк Браун и др. определили существование кристаллической воды и гидрата аммиака у одного из крупнейших известных объектов Койпера 50000 Quaoar (Квавар). Оба этих вещества были уничтожены в процессе жизни Солнечной системы, а, значит, поверхность Квавара недавно изменилась вследствие тектонической активности или падения метеорита.

Компания Плутона в поясе Койпера достойна упоминания. Квавар, Макемаке, Хаумеа, Эрида и Орк — все это крупные ледяные тела пояса Койпера, у некоторых из них даже есть спутники. Они чрезвычайно далеки, но все же находятся в пределах досягаемости.

Облако Оорта и дальние регионы

Полагают, что облако Оорта простирается от 2000-5000 а. е. до 50 000 а. е. от Солнца, хотя некоторые продлевают этот диапазон до 200 000 а. е. Это облако, как полагают, состоит из двух регионов — сферического внешнего облака Оорта (в пределах 20 000 – 50 000 а. е.) и дискообразного внутреннего облака Оорта (2000 – 20 000 а. е.).

Внешнее облако Оорта может иметь триллионы объектов больше 1 км и миллиарды — больше 20 км в диаметре. Его общая масса неизвестна, но — при условии, что комета Галлея является типичным представлением внешних объектов облака Оорта, — можно очертить ее грубо в 3×10^25 килограммов, или в пять Земель.

На основании анализа последних комет, подавляющее большинство объектов облака Оорта состоит из летучих ледовитых веществ — воды, метана, этана, моноксида углерода, цианистого водорода и аммиака. Появление астероидов, как считают, объясняется облаком Оорта — в популяции объектов может быть 1-2% астероидов.

Первые оценки поместили их массу в рамки 380 земных масс, но расширенное знание распределения комет с длинных периодов понизило эти показатели. Масса внутреннего облака Оорта пока остается не рассчитанной. Содержание пояса Койпера и облака Оорта называется транснептуновыми объектами, поскольку объекты обоих регионов обладают орбитами, которые дальше от Солнца, чем орбита Нептуна.

Исследование Солнечной системы

Наши знания о Солнечной системе серьезно расширились из-за появления автоматических роботизированных космических аппаратов, спутников и роботов. Начиная с середины 20 века у нас была так называемая «космическая эра», когда пилотируемые и беспилотиные космические аппараты начали исследовать планеты, астероиды и кометы внутренней и внешней Солнечной системы.

Все планеты Солнечной системы были посещены в разной степени аппаратами, запущенными с Земли. В процессе этих беспилотных миссий люди смогли получить фотографии планет. Некоторые миссии позволили даже «попробовать» почву и атмосферу.

«Спутник-1»

Первым искусственным объектом, отправленным в космос, был советский «Спутник-1» в 1957 году, успешно покруживший вокруг Земли и собравший информацию о плотности верхних слоев атмосферы и ионосферы. Американский зонд Explorer 6, запущенный в 1959 году, был первым спутником, сделавшим снимки Земли из космоса.

Роботизированные космические аппараты также выявили много значимой информации об атмосферных, геологических и поверхностных особенностях планеты. Первым успешным зондом, пролетевшим мимо другой планеты, был советский был зонд «Луна-1», который ускорился с помощью Луны в 1959 году. Программа Mariner привела к множеству успешных облетов планет, посещению зондом Mariner 2 Венеры в 1962 году, Mariner 4 — Марса в 1965 году и Mariner 10 — Меркурия в 1974 году.

К 1970-м годам были посланы зонды и к другим планетам, начиная с миссии «Пионера-10» к Юпитеру в 1973 году и «Пионера-11» к Сатурну к 1979 году. Зонды «Вояджер» провели грандиозный тур по другим планетам после запуска в 1977 году, оба зонда прошли Юпитер в 1979 году и Сатурн в 1980-1981. «Вояджер-2» затем близко подошел к Урану в 1986 году и к Нептуну в 1989 году.

Запущенный 19 января 2006 года, зонд «Новые горизонты» стал первым искусственным космическим аппаратом, который будет исследовать пояс Койпера. В июле 2015 года эта беспилотная миссия пролетела мимо Плутона. В ближайшие годы зонд займется изучением ряда объектов пояса Койпера.

Орбитальные аппараты, роверы и спускаемые аппараты начали разворачиваться на других планетах Солнечной системы к 60-м годам. Первым стал советский спутник «Луна-10», отправленный на лунную орбиту в 1966 году. За ним последовал 1971 год с развертыванием космического зонда Mariner 9, который облетел Марс, и советский зонд «Венера-9», который вышел на орбиту Венеры в 1975 году.

Зонд Galileo стал первым искусственным спутником, вышедшим на орбиту внешней планеты, когда достиг Юпитера в 1995 году; за ним последовала миссия «Кассини-Гюйгенс» на Сатурн в 2004 году. Меркурий и Веста были исследованы в 2011 году зондами MESSENGER и Dawn соответственно, после чего Dawn посетил орбиту карликовой планеты Цереры в 2015 году.

Первый зонд, который приземлился на другое тело Солнечной системы, был советский «Луна-2», который упал на Луну в 1959 году. С тех пор зонды высаживались или падали на поверхности Венеры в 1966 году («Венера-3»), Марса в 1971 году («Марс-3» и «Викинг-1» в 1976 году), астероид Эрос 433 в 2001 году (NEAR Shoemaker) и спутник Сатурна Титан («Гюйгенс») и комету Темпеля 1 (Deep Impact) в 2005 году.

Ровер «Кьюриосити» сделал этот мозаичный автопортрет с помощью камеры MAHLI, находясь на плоской осадочной породе.

На сегодняшний день только два мира Солнечной системы, Луна и Марс, были посещены передвижными роверами. Первым роботизированным ровером, который приземлился на другое тело, был советский «Луноход-1», который приземлился на Луну в 1970 году. В 1997 году на Марс высадился «Соджорнер», который проехал по поверхности планеты 500 метров, за ним последовали «Спирит» (2004 год), «Оппортьюнити» (2004 год), «Кьюриосити» (2012 год).

Пилотируемые миссии в космос начались в начале 50-х, и у двух сверхдержав, США и СССР, которые были завязаны в космической гонке, были две точки фокуса. Советский Союз сосредоточился на программе «Восток», которая включала отправку пилотируемых космических капсул на орбиту.

Первая миссия — «Восток-1» — состоялась 12 апреля 1961 года, первый человек — Юрий Гагарин — вышел в космос. 6 июня 1963 года Советский Союз также отправил первую женщину в космос — Валентину Терешкову — в рамках миссии «Восток-6».

В США проект «Меркурий» был инициирован с той же целью вывода капсулы с экипажем на орбиту. 5 мая 1961 года астронавт Алан Шепард вышел в космос с миссией Freedon 7 и стал первым американцем в космосе.

После того как программы «Восток» и «Меркурий» завершились, в центре внимания обоих государств и космических программ оказалось развитие космического аппарата на два-три человека, а также длительные космические полеты и внекорабельная деятельность (EVA), то есть, выход космонавтов в космос в автономных скафандрах.

В результате этого в СССР и США начали развивать собственные программы «Восход» и «Джемини». Для СССР в это входила разработка капсулы на два-три человека, а «Джемини» сосредоточилась на развитии и экспертной поддержке, необходимых для возможного пилотируемого полета на Луну.

Эти последние усилия привели 21 июля 1969 года к миссии «Аполлон-11», когда астронавты Нил Армстронг и Базз Олдрин стали первыми людьми, которые ходили по Луне. В рамках этой программы были осуществлены еще пять лунных высадок, и программа принесла множество научных посылок с Земли.

После высадки на Луну центр внимания американских и советских программ начал смещаться к развитию космических станций и космических аппаратов многоразового использования. Для Советов это вылилось в первые пилотируемые орбитальные станции, посвященные космическим научным исследованиям и военной разведке, известные как космические станции «Салют» и «Алмаз».

Первой орбитальной станцией, которая вместила более одного экипажа, стала «Скайлэб» NASA, она успешно вместила три экипажа с 1973 по 1974 годы. Первым настоящим поселением людей в космосе стала советская станция «Мир», которую последовательно занимали в течение десяти лет, с 1989 по 1999 годы. В 2001 году ее закрыли, а ее последователь, Международная космическая станция, с тех пор поддерживает постоянное присутствие людей в космосе.

Космические шаттлы США, дебютировавшие в 1981 году, стали и остаются на данный момент единственными многоразовыми космическими аппаратами, которые успешно осуществили множество орбитальных полетов. Пять построенных шаттлов («Атлантис», «Индевор», «Дискавери», «Челленджер», «Колумбия» и «Энтерпрайз») налетали в сумме 121 миссию, пока в 2011 программу не закрыли.

За время своей истории функционирования два таких аппарата погибли в катастрофах. Это были катастрофа «Челленджера», который взорвался на взлете 28 января 1986 года, и «Колумбия», который развалился при повторном входе в атмосферу 1 февраля 2003 года.

Что было дальше, вы прекрасно знаете. Пик 60-х сменился непродолжительным исследованием Солнечной системы и, в конце концов, упадком. Возможно, очень скоро мы получим продолжение.

Вся полученная в ходе миссий информация о геологических явлениях или других планетах — о горах и кратерах, например — а также об их погодных и метеорологических феноменах (облаках, пыльных бурях и ледяных шапках) привела к осознанию того, что другие планеты переживают в сущности те же явления, что и Земля. Кроме того, все это помогло ученым больше узнать об истории Солнечной системы и ее образовании.

Поскольку наше исследование внутренней и внешней Солнечной системы постоянно набирает обороты, изменился и наш подход к категоризации планет. Наша текущая модель Солнечной системы включает восемь планет (четыре земного типа, четыре газовых гиганта), четыре карликовых планеты и растущее число транснептуновых объектов, которые еще только предстоит обозначить.

Учитывая огромные размеры и сложность Солнечной системы, ее исследование в полных деталях займет очень много лет. Будет ли оно того стоить? Безусловно.

Другие статьи:

nlo-mir.ru