Справочник химика 21. Заряд атома ядра соответствует


Заряд ядра атома. Чему он равен и как изменяется? Все интересные факты

Содержание 

Понятие атома и его структуры

Как определить заряд ядра атома?

Чему равен заряд ядра атома брома?

Понятие атома и его структуры

Многие могут утверждать, что химия — сложная наука, которая понятна далеко не всем. Но если серьезно засесть за учебники и начать с самых азов, то все окажется далеко не таким мрачным. Первое, с чего стоит начать — атом и его основные характеристики.

Атом — это та наименьшая частица всего, что нас окружает, которая несет в себе всю необходимую информацию,частица, определяющая характеристики и заряды. Долгое время ученые думали, что она неделима, едина, однако в течение долгих часов, дней, месяцев и годов проводились изучения, исследования и опыты, которые доказали, что атом также имеет свою структуру. Другими словами, этот микроскопический шарик состоит из еще меньших составляющих, которые влияют на величину его ядра, свойства и заряд. Структура же этих частиц такова:

  • электроны;
  • ядро атома.

Последнее также можно разделить на совсем элементарные части, которые в науке именуют протонами и нейронами, которых насчитывается четкое количество в каждом конкретном случае.

Число протонов, которые есть в ядре, указывает на структуру оболочки, которая состоит из электронов. Эта оболочка же, в свою очередь, вмещает в себя все необходимые свойства определенного материала, вещества либо предмета. Вычислить сумму протонов очень просто — достаточно знать порядковый номер наименьшей части вещества (атома) во всем известной таблице Менделеева. Это значение еще называют атомным числом и обозначают латинской буквой «Z». Важно помнить, что протоны владеют позитивным зарядом, а на письме это значение определяется как +1.

Нейроны — второе составляющее ядра атома. Это элементарная субатомная частица, которая не несет никакого заряда в отличие от электронов или протонов. Нейроны были открыты в 1932 году Дж. Чедвиком, за что он, спустя 3 года, получил Нобелевскую премию. В учебниках и научных трудах их обозначают как латинский символ «n».

Третья составляющая атома — электрон, который находится в монотонном движении вокруг ядра, создавая таким образом облако. Именно эта частица самая легкая из всех известных современной науке, а это значит, что и заряд ее также наименьший.Обозначаетсяэлектрон на письме от −1.

Именно соединение положительных и негативных частиц в структуре, делает атом незаряженной или нейтрально заряженной частицей. Ядро, в сравнении с общим размеров всего атома, очень маленькое, но именно в нем сосредоточен весь вес, что говорит о его высокой плотности.

Как определить заряд ядра атома?

Чтобы определить заряд ядра атома, нужно хорошо разбираться в строении, структуре самого атома и его ядра, понимать основные законы физики и химии, а также иметь на вооружении периодическую таблицу Менделеева для определения атомного числа химического элемента.

Для того чтобы найти и рассчитать заряд ядра атома, нужно:

  1. Знание того, что микроскопическая частица любого вещества имеет в своей структуре ядро и электроны, которые создают возле него оболочку в виде облака. В состав ядра, в свою очередь, входят два вида элементарных неделимых частиц: протоны и нейроны, каждый из которых имеет свои свойства и характеристики. Нейроны не располагают в своем арсенале электронным зарядом. Это означает, что их заряд не равен и не больше или меньше ноля. Протоны, в отличие от своих собратьев, несут положительный заряд. Иными словами, их электрический заряд можно обозначить как +1.
  2. Электроны, которые являются неотъемлемой частью каждого атома, также несут в себе определенный вид электрического заряда. Они являются негативно заряженными элементарными частицами, а на письме они определяются как −1.
  3. Чтобы вычислить заряд атома, нужны знания о его структуре (мы только что вспомнили необходимые сведения), количестве элементарных частиц в составе. А для того, чтобы узнать суму заряда атома, нужно математическим способом добавить количество одних частиц (протонов) к другим (электронам). Обычно, характеристика атома говорит о том, что он электрон нейтрален. Другими словами значение электронов приравнивается количеству протонов. Итог таков — значение заряда такого атома равен нулю.
  4. Важный нюанс: бывают ситуации, когда число позитивно и негативно заряженных элементарных частиц в ядре может не быть равным. Это говорит о том, что атом становиться ионом с положительным или отрицательным зарядом.

Это были основные советы и рекомендации для тех, кто пытается разобраться в основах естественных наук. Ну и еще немного формул.

Обозначениеядра атома в научной сфере выглядит как Ze. Расшифровать это достаточно просто: Z — это тот номер, который присвоен элементу во всем известной таблице Менделеева, еще его называют порядковым или зарядным числом. И указывает оно на количество протонов в ядре атома, а e — это всего лишь заряд протона.

В современной науке существуют ядра с разным значением зарядов: от 1 до 118.

Еще одно важное понятие, которое нужно знать юным химикам — массовое число. Это понятие указывает на общую суму заряда нуклонов (это те самые мелкие составляющие части ядра атома химического элемента). И найти это число можно, если воспользоваться формулой: A = Z + N где А — искомое массовое число, Z — количество протонов, а N — значение нейтронов в ядре.

Чему равен заряд ядра атома брома?

Чтобы на практике продемонстрировать, как найти заряд атома необходимого элемента (в нашем случае, брома), стоит обратиться к периодической таблице химических элементов и найти там бром. Его порядковыйномер 35. Это означает, что и заряд ядра его равен 35, поскольку он зависит от числа протонов в ядре. А на число протонов указывает номер, под которым стоит химический элемент в великом труде Менделеева.

Приведем еще несколько примеров, чтобы в будущем юным химикам и было проще рассчитать необходимые данные:

  • заряд ядра атома натрия (na)равен 11, поскольку именно под этим номером его можно найти в таблице химических элементов.
  • заряд ядра фосфора (символическое обозначение которого P) имеет значение 15, ведь именно столько в его ядре протонов;
  • сера (с графическим обозначениемS) — соседка по таблице предыдущегоэлемента, поэтому и заряд ядра у нее 16;
  • железо (а найти мы его можем в обозначенииFe) стоит под номером 26, что говорит о таком же количестве протонов в его ядре, а значит и заряде атома;
  • углерод (он же C) находится под 6 номером периодической таблицы, что и указывает на нужную нам информацию;
  • магний имеет атомный номер 12, а в международной символике его знают как Mg;
  • хлор в периодической таблице, где он пишетсякак Cl, стоит под 17 номером, поэтому и его атомное число (а именно оно нам нужно) такое же — 17;
  • кальций (Ca), который так полезен для юных организмов, находим под номером 20;
  • заряд ядра атома азота (с письменным обозначениемN) равняется 7, именно в такой очереди он представлен в таблице Менделеева;
  • барий стоит под 56 номером, что и равно его атомной массе;
  • химический элемент селен (Se) имеет в своем ядре 34 протона, а это показывает, что именно таким будет заряд ядра его атома;
  • серебро (или в письменном обозначенииAg) имеет порядковыйномер и атомную массу 47;
  • если же нужно узнать заряд ядра атома лития (Li), то нужно обратиться к началу великого труда Менделеева, где он находится под номером 3;
  • аурум или всеми нами любимое золото (Au) имеет атомную массу 79;
  • у аргона же это значение равно 18;
  • рубидий имеет атомную массу в размере 37, а у стронция она равна 38.

Перечислять все составляющие периодической таблицы Менделеева можно еще очень долго, ведь их (этих составляющих) очень много. Главное, что суть этого явления понятна, а если нужно будет вычислить атомное число калия, кислорода, кремния, цинка, алюминия, водорода, бериллия, бора, фтора, меди, фтора, мышьяка, ртути, неона, марганца, титана, то стоит только обратиться к таблице химических элементов и узнать порядковый номер того или иного вещества.

1000sovetov.ru

Заряд ядра, теория и примеры задач

Определение и заряд ядра

Заряд ядра (Zq_e) определяет местоположение химического элемента в таблице Д.И. Менделеева. Число Z – это количество протонов в ядре. q_e=1,6\cdot {10}^{-19}Кл — заряд протона, который равен по величине заряду электрона.

Еще раз подчеркнем, что заряд ядра определяет количество положительных элементарных зарядов, носителями которых являются протоны. А так как атом является в целом нейтральной системой, то заряд ядра определяет и количество электронов в атоме. А мы помним, что электрон имеет отрицательный элементарный заряд. Электроны в атоме распределяются по энергетическим оболочкам и подоболочкам в зависимости от их количества, следовательно, заряд ядра оказывает существенное влияние на распределение электронов по их состояниям. От количества электронов на последнем энергоуровне зависят химические свойства атома. Получается, заряд ядра определяет химические свойства вещества.

В настоящее время принято обозначать различные химические элементы следующим образом: ^A_ZX, где X – символ химического элемента в периодической таблице, который соответствует заряду Zq_e.

Элементы, у которых равны Z, но разные атомные массы (A) (это означает, что в ядре одинаковое число протонов, но разное количество нейтронов) называют изотопами. Так, водород имеет два изотопа: 11H-водород; 21H-дейтерий; 31H-тритий

Существуют устойчивые и неустойчивые изотопы.

Ядра, обладающие одинаковыми массами, но разными зарядами называются изобарами. Изобары в основном, встречаются среди тяжелых ядер, причем парами или триадами. Например, ^{36}_{16}S и ^{36}_{18}{Ar}.

Первым косвенное измерение заряда ядра сделал Мозли в 1913 г. Он установил связь между частотой характеристического рентгеновского излучения (\nu) и зарядом ядра (Z):

    \[\sqrt{\nu}=CZ-B \qquad (1)\]

где C и B постоянные не зависящие от элемента для рассматриваемой серии излучения.

Напрямую заряд ядра был определен Чедвиком в 1920 г. при исследовании рассеяния ядер атома гелия на металлических пленках.

Состав ядра

Ядро атома водорода (^1_1H) называется протоном. Масса протона равна:

    \[m_p=1,67\cdot {10}^{-27}\left(kg\right)\]

Ядро состоит из протонов и нейтронов (вместе их называют нуклонами). Нейтрон был открыт в 1932 г. Масса нейтрона очень близка к массе протона. Нейтрон электрического заряда не имеет.

Сумму количества протонов (Z) и числа нейтронов (N) в ядре называют массовым числом A:

    \[A=Z+N \qquad (2)\]

Поскольку массы нейтрона и протона очень близкие, каждая из них равна почти атомной единице массы. Масса электронов в атоме много меньше, массы ядра, поэтому считают, что массовое число ядра приблизительно равно относительной атомной массе элемента, если округлить его до целого.

Примеры решения задач

ru.solverbook.com

Заряд ядра атома - Справочник химика 21

    В 1912 г. Генри Мозли (1887-1915) обнаружил, что частота рентгеновского излучения, испускаемого элементами при бомбардировке электронным пучком, лучше коррелирует с их порядковыми номерами, чем с атомными массами. Закономерная взаимосвязь между порядковым номером элемента и частотой (или энергией) рентгеновских лучей, испускаемых элементом, определяется внутриатомным строением элементов. Как мы узнаем из гл. 8, электроны внутри атома располагаются по энергетическим уровням. Когда элемент бомбардируется мощным пучком электронов, атомные электроны, находящиеся на самых глубоких энергетических уровнях, или, иначе, электроны из самых внутренних оболочек (ближайших к ядру), могут вырываться из атомов. Когда внешние электроны переходят со своих оболочек на образовавшиеся вакансии, атомы излучают энергию в форме рентгеновских лучей. Рентгеновский спектр элемента (набор частот испускаемого рентгеновского излучения) содержит в себе информацию об электронных энергетических уровнях его атомов. В настоящий момент для нас важно то, что эта энергия зависит от заряда ядра атома. Чем больше заряд атомного ядра, тем прочнее связаны с ним самые внутренние электроны атома. Тем большая энергия требуется для выбивания из атомов этих электронов и, следовательно, тем большая энергия испускается, когда внешний электрон переходит на вакансию во внутренней электронной оболочке. Мозли установил, что частота испускаемого при этом рентгеновского излучения (ее обозначают греческой буквой ню , V) связана с порядковым номером элемента Z соотношением [c.311]     Превраш,ения изотопов могут быть изображены в виде ядерных реакций. В уравнениях этих реакций символ элемента имеет два индекса, из которых нижний индекс соответствует заряду ядра атома, а верхний — его массовому числу. Так, уравнения ядерных реакций превращения радия в радон и ез В1 в полоний имеют следующий вид  [c.65]

    В вертикальных рядах элементов, принадлежащих к одной и той же группе, нуклеофильная реакционная способность возрастает с увеличением атомной массы. Так, из галогенов (элементы Vil группы) наибольшей нуклеофильной силой обладает иод. Несмотря на то что заряд ядра атома иода (53) намного больше, чем заряд ядра атома фтора (9), определяющие нуклео фильные свойства неподеленные пары электронов у иода находятся на большем расстоянии от ядра, и притяжение их к ядру значительно ослаблено экранирующим действием электронов заполненных внутренних оболочек. Это обусловливает большую поляризуемость внешних неподеленных пар, что облегчает взаимодействие их с атомом углерода, имеющим дефицит электронной плотности, и позволяет образовывать связь на больших межъядерных расстояниях. Таким образом, у галогенид-ионов нуклеофильная сила уменьшается п ряду  [c.101]

    Зависимость атомных радиусов от заряда ядра атома 2 имеет периодический характер, В пределах одного периода с увеличением 2 проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах (радиусы атомов приведены в нм)  [c.99]

    Электронное строение молекулы N2 было рассмотрено в разд. 2.5. я-Связи между атомами азота (в отличие от углерода) прочнее а-связей (иа рис. 3.43 линия зависимости Е от кратности связи для связей углерод—углерод загибается вниз, а для связей азот—азот—вверх, что обусловлено большим, чем у углерода, зарядом ядра атома N. При образовании только одной а-связи ядра [c.394]

    В настоящее время периодический закон формулируется следующим образом свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов. [c.28]

    Химические свойства элементов и их соединений являются периодической функцией заряда ядра атома. С ростом заряда ядра, т.е. порядкового номера элемента, периодически меняются строение двух внешних электронных оболочек, радиусы атомов, радиусы и заряды ионов. Эти факторы определяют валентность элемента, его окислительно-восстановительную способность и кислотно-основную характеристику. Количество электронов на двух оболочках (предпоследний и наружный слои) приведено в табл. 4, радиусы атомов — в табл. 5. [c.12]

    Электроны наружного слоя, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних. Атомы, лишившиеся одного или нескольких электронов, становятся заряженными положительно, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот, атомы, присоединившие [c.99]

    В результате захвата электрона заряд ядра атома уменьшается на единицу и в соответствии с законом смещения получается изотоп, который смещен в периодической системе относительно исходного на одно место с меньшим номером. Одновременно происходи" выделение кванта лучистой энергии в виде характеристического рентгеновского излучения, которое связано с переходом электрона с более удаленных уровней на уровень К. Так, ядерное уравнение перехода в путем К-захвата имеет следующий вид  [c.68]

    Впоследствии оказалось, что тремя упоминавшимися Мозли неизвестными элементами являются элемент 43 (технеций. Тс), 61 (прометий, Рт) и 75 (рений. Ре). В 1923 г. Д. Костер и Г. Хевеши показали, что одна из отсутствовавших линий на графике Мозли принадлежит новому элементу гафнию (Н1 72). По-видимому, работа Мозли явилась одним из наиболее важных шагов в построении периодической системы элементов. Она показала, что порядковый (атомный) номер (или заряд ядра атома), а не атомная масса является важнейшим свойством элемента, определяющим его химическое поведение. [c.312]

    В результате развития учения о строении атомов (в работах Мозли, Д. С. Рождественского, Зоммерфельда, Бора и др.) было доказано, что порядковый номер элемента в периодической системе равен заряду ядра атомов этого элемента была раскрыта причина периодичности свойств элементов, объяснено образование побочных групп периодической системы, особенности свойств редкоземельных элементов и др. [c.39]

    Дело в том, что химические свойства атомов, как было указано в 13 и 14, хотя и определяются в основном зарядом ядра атома, но в очень слабой сте- - [c.545]

    Свойства элементов, а также свойства и формы их соединений находятся в периодической зависимости от заряда ядра атома элемента. [c.24]

    Современная формулировка закона отличается от предыдущих только тем, что место атомного веса, а потом номера элемента в ней заняло выражение ...от заряда ядра атомов элемента [9]. Хотя формально определение закона вроде бы совершенствуется, но некорректность его формы остается. От заряда ядра атомов элемента до повторяемости их свойств [c.58]

    Чем объяснить периодичность в свойствах элементов при последовательном увеличении заряда ядра атомов  [c.71]

    Заряд ядра атома химического элемента равен порядковому номеру этого элемента в Периодической системе. Вследствие электронейтральности атома, общее число электронов в атоме равно заряду ядра, т. е. также совпадает с порядковым номером. [c.24]

    Б62. Для большинства элементов увеличение заряда ядра атома и порядкового номера вызывает изменение количества электронов на внешнем или предпоследнем электронном слое, определяющем в основном химические свойства элементов. [c.207]

    При увеличении заряда ядра атома последовательное заполнение электронных орбиталей происходит от орбиталей с меньшим значением суммы главного и орбитального квантовых чисел (п- -1) к орбиталям с большим значением этой суммы. [c.12]

    Возможность участия внешних d (/)-орбиталей в гибридизации за висит от эффективного заряда ядра атома. Чем больше эффективный заряд атома, тем сильнее d (/)-орбитали прижимаются к ядру и тем легче осуществляется участие этих орбиталей в гибридизации с s-и р-орбиталями. [c.76]

    Чему равен заряд ядра атома элемента, находящегося а) в третьей группе в третьем ряду б) в четвертой группе в четвертом ряду в) в шестой группе в пятом ряду  [c.40]

    Основываясь на положении в периодической системе меди, цинка, бора, кремния, аргона, серы, ответить на вопросы а) какой заряд ядра атома б) сколько в атоме валентных электронов в) сколько электронов, в наружном слое атома  [c.41]

    Сколько нейтронов находится в ядре атома кремния, если его массовое число равно 28, а заряд ядра атома 14  [c.41]

    Сообразуясь с положением тория в периодической системе, ответьте на следующие вопросы 1) каков заряд ядра атома, 2) сколько валентных электронов в атоме, 3) какое количество нейтронов в ядре атома [c.149]

    Все известные элементы расположили друг за другом в одной таблице и присвоили им порядковые номера. Причем сделано это таким образом, что заряд ядра атома каждого химического элемента, выраженный в единицах заряда электрона, равен его порядковому номеру в этой таблице. Сама таблица получила название Периодической системы элементов. В дальнейшем Вы неоднократно будете использовать эту таблицу. А пока вспомните, что [c.21]

    Это открытие дало повое обоснование расположению элементов в периодической системе. Вместе с тем оно устраняло и кажущееся противоречие в системе Менделеева — положение некоторых элементов с большей атомной массой впереди элементов с меньшей атомной массой (теллур и иод, аргон и калнй, кобальт и никель). Оказалось, что противоречия здесь нет, так как место элемента в системе определяется зарядом атомного ядра. Было экспериментально установлено, что заряд ядра атома теллура равен 52, а атома иода—53 поэтому теллур, несмотря иа большую атомную массу, должен стоять впереди иода. Точно так же заряды ядер аргона и калия, никеля и кобальта полностью отвечают по-следоиатольмостп расположения этих элементов в системе. [c.61]

    Английский физик Чарльз Гловер Баркла (1877—1944) сделал следующий важный шаг. Он установил, что при рассеивании рентгеновских лучей различными элементами образуются пучки рентгеновских лучей, которые проникают в вещество на характеристические величины. Каждый элемент создает особый набор рентгеновских лучей. В трубке Крукса источником таких рентгеновских лучей становился под действием пучка катодных лучей антикатод (который изготавливали из различных металлов). Другой английский физик, Генри Гвин Джефрис Мозли (1887—1915), используя в качестве антикатода различные элементы, в 1913 г. установил, что чем больше атомная масса элемента, тем меньше длина волны образующихся рентгеновских лучей. Эта обратная зависимость, доказывал Мозли, связана с величиной положительного заряда ядра атома. Чем больше заряд, тем короче длина волны рентгеновских лучей. [c.156]

    Исходя из длины волны, можно вычислить заряд ядра атома любого элемента. Таким образом в итоге удалось показать, что згряд ядра водорода равен +1, гелия +2, лития +3 и так далее вплоть до урана , заряд ядра которого равен +92. [c.156]

    Решение. Заряд ядра атома искомого элемента 92 численно совпадает с номером элемента п псриояптеском снстемс. Элемент Л 92 — урап, символ — и. [c.48]

    Свойстна элементов а образуемых ими простых и сложных веществ ниходятсп в периодической зависимости от заряда ядра атомов элементов. [c.61]

    Строение внешних электронных оболочек атомов элемеитов ПА-иодгрулпы ns Поскольку заряд ядра атомов этих элементов [c.312]

    Последовательность заполнения атомных электронных орбита-лей в зависимости от значений главного и орбитального квантовых чисел была исследована советским ученым В. М. Клечков-ским, который установил, что энергия эле[мере увеличения сум.мы этих двух квантовых чисел, т. е. величины ( + /). В соответствии с этим, им было сформулировано следующее положение (первое правило К л е ч к о в с к о г о) при увеличении заряда ядра атома последовательное заполнение элек тронных орбиталей происходит от орбиталей с меньшим значением суммы главного и орбитального квантовых чисел (л + /) к орбиталям с большим значением этой суммы. [c.93]

    Резерфорд, Гейгер и Марсден вычислили, что наблюдаемое рикошети-рование а-частиц можно объяснить, если предположить, что практически вся масса и весь положительный заряд атома сконцентрированы в плотном ядре, находящемся в центре атома (рис. 8-2,6). Из их расчетов также следовало, что заряд ядра атома золота должен быть равен 1(Ю 20 (в действительности он равен 79), а радиус этого ядра не превышает 10 см (в действительности он ближе к 10 см). [c.332]

    Пер1юдический закон указывает на периодический характер функциональной зависимости свойств элементов от заряда ядра атомов такой вид имеет эта зависнмость для огромного.числа самых разнообразных характеристик. На рис. 1.11 и 1.12 показаны завнскмости атомных объемов и первых энергий ионизации атомов от порядкового номера элементов. Эти зависимости выражаются кривыми, имеющими ряд максимумов и минимумов. Аналогичный характер имеет подобная зависимость и для многих других свойств (коэффициент сжимаемости, коэффициент расширения, температуры плавления и кипения, радиусы ионов и т. д.). [c.34]

    Справедливость уравнеиня (1.38) иллюстрирует рис. 1.14. Эта закономерность была установлена экспериментально в 1913 г. Мо-зели (Англия). Работа Мозели позволила доказать, что заряд ядра атома численно равен порядковому номеру элемента, и [c.35]

    Строение внешних электронных оболочек атомов Ри 4 55 КН 4й855> Р(1 Оз 4f БdЩs 1г 4f 5dЩs Р1 4/ 5 9б5. Проявляемая Ри, и Оз степень окисления +8 отвечает вовлечению в образование связи всех - и о(-электронов этих атомов. В атомах элементов, следующих за Ри и Оз, благодаря увеличению заряда ядра атомов электроны более прочно связаны и это снижает проявляемые этими элементами максимальные степени окисления и делает более устойчивыми низкие степени окисления. [c.574]

    Как видно, нуклеофильная реакционная способность не зависит от числа электронных пар у атома элемента. Несмотря на то, что у иона F четыре неподеленные пары электронов, а у карбаннона только одна, ион СНз — несравненно более реакционноспособный нуклеофил вследствие большей поляризуемости его неподеленной пары электронов, обусловленной меньшнм зарядом ядра атома углерода по сравнению с фтором. [c.101]

    Положительная валентность, проявляющаяся при передаче электронов другим атомам, присуща галогенам в меньшей степени, чем всем другим элементам, за исключением инертных газов. Это объясняется тем, что внешние электроны в атомах галогенов связаны с ядром прочнее, чем у других элементов тех же периодов, стоящих левее, так как заряд ядра атома галогена всегда выше, чем у соседа слева по периоду. Однако высшие положительные валентности +1, -ЬЗ, +5 и +7 могут проявлят1 )Ся всеми галогенами, за исключением фтора, [c.59]

    В центре атома находится положительно заряженое ядро, обладающее значительной (в масштабах атома массой и маленькими размерами. Различные атомы отличаются друг от друга значением заряда ядра. Атомы, обладающие одинаковым значением заряда ядра могут иметь различные значения относительной атомной массы, но проявляют одинаковые химические свойства. Следовательно, заряд ядра является важнейшей характеристикой атома и определяет его химические свойства. Поэтому значение заряда ядра выбрали за основной признак, по которому атомы относят к разным видам. Мы пришли к более строгому определению химического элемента. [c.21]

chem21.info

Как определить заряд ядра атома

Заряд ядра атома

Как определить заряд ядра атома

Многие могут утверждать, что химия — сложная наука, которая понятна далеко не всем. Но если серьезно засесть за учебники и начать с самых азов, то все окажется далеко не таким мрачным. Первое, с чего стоит начать — атом и его основные характеристики.

Атом — это та наименьшая частица всего, что нас окружает, которая несет в себе всю необходимую информацию,частица, определяющая характеристики и заряды.

Долгое время ученые думали, что она неделима, едина, однако в течение долгих часов, дней, месяцев и годов проводились изучения, исследования и опыты, которые доказали, что атом также имеет свою структуру.

Другими словами, этот микроскопический шарик состоит из еще меньших составляющих, которые влияют на величину его ядра, свойства и заряд. Структура же этих частиц такова:

Последнее также можно разделить на совсем элементарные части, которые в науке именуют протонами и нейронами, которых насчитывается четкое количество в каждом конкретном случае.

Число протонов, которые есть в ядре, указывает на структуру оболочки, которая состоит из электронов. Эта оболочка же, в свою очередь, вмещает в себя все необходимые свойства определенного материала, вещества либо предмета.

 Вычислить сумму протонов очень просто — достаточно знать порядковый номер наименьшей части вещества (атома) во всем известной таблице Менделеева. Это значение еще называют атомным числом и обозначают латинской буквой «Z».

Важно помнить, что протоны владеют позитивным зарядом, а на письме это значение определяется как +1.

Нейроны — второе составляющее ядра атома. Это элементарная субатомная частица, которая не несет никакого заряда в отличие от электронов или протонов. Нейроны были открыты в 1932 году Дж. Чедвиком, за что он, спустя 3 года, получил Нобелевскую премию. В учебниках и научных трудах их обозначают как латинский символ «n».

Третья составляющая атома — электрон, который находится в монотонном движении вокруг ядра, создавая таким образом облако. Именно эта частица самая легкая из всех известных современной науке, а это значит, что и заряд ее также наименьший.Обозначаетсяэлектрон на письме от −1.

Именно соединение положительных и негативных частиц в структуре, делает атом незаряженной или нейтрально заряженной частицей. Ядро, в сравнении с общим размеров всего атома, очень маленькое, но именно в нем сосредоточен весь вес, что говорит о его высокой плотности.

Как определить заряд ядра атома?

Чтобы определить заряд ядра атома, нужно хорошо разбираться в строении, структуре самого атома и его ядра, понимать основные законы физики и химии, а также иметь на вооружении периодическую таблицу Менделеева для определения атомного числа химического элемента.

Для того чтобы найти и рассчитать заряд ядра атома, нужно:

  1. Знание того, что микроскопическая частица любого вещества имеет в своей структуре ядро и электроны, которые создают возле него оболочку в виде облака. В состав ядра, в свою очередь, входят два вида элементарных неделимых частиц: протоны и нейроны, каждый из которых имеет свои свойства и характеристики. Нейроны не располагают в своем арсенале электронным зарядом. Это означает, что их заряд не равен и не больше или меньше ноля. Протоны, в отличие от своих собратьев, несут положительный заряд. Иными словами, их электрический заряд можно обозначить как +1.
  2. Электроны, которые являются неотъемлемой частью каждого атома, также несут в себе определенный вид электрического заряда. Они являются негативно заряженными элементарными частицами, а на письме они определяются как −1.
  3. Чтобы вычислить заряд атома, нужны знания о его структуре (мы только что вспомнили необходимые сведения), количестве элементарных частиц в составе. А для того, чтобы узнать суму заряда атома, нужно математическим способом добавить количество одних частиц (протонов) к другим (электронам). Обычно, характеристика атома говорит о том, что он электрон нейтрален. Другими словами значение электронов приравнивается количеству протонов. Итог таков — значение заряда такого атома равен нулю.
  4. Важный нюанс: бывают ситуации, когда число позитивно и негативно заряженных элементарных частиц в ядре может не быть равным. Это говорит о том, что атом становиться ионом с положительным или отрицательным зарядом.

Это были основные советы и рекомендации для тех, кто пытается разобраться в основах естественных наук. Ну и еще немного формул.

Обозначениеядра атома в научной сфере выглядит как Ze. Расшифровать это достаточно просто: Z — это тот номер, который присвоен элементу во всем известной таблице Менделеева, еще его называют порядковым или зарядным числом. И указывает оно на количество протонов в ядре атома, а e — это всего лишь заряд протона.

В современной науке существуют ядра с разным значением зарядов: от 1 до 118.

Еще одно важное понятие, которое нужно знать юным химикам — массовое число. Это понятие указывает на общую суму заряда нуклонов (это те самые мелкие составляющие части ядра атома химического элемента). И найти это число можно, если воспользоваться формулой: A = Z + N где А — искомое массовое число, Z — количество протонов, а N — значение нейтронов в ядре.

Чему равен заряд ядра атома брома?

Чтобы на практике продемонстрировать, как найти заряд атома необходимого элемента (в нашем случае, брома), стоит обратиться к периодической таблице химических элементов и найти там бром.

Его порядковыйномер 35. Это означает, что и заряд ядра его равен 35, поскольку он зависит от числа протонов в ядре.

А на число протонов указывает номер, под которым стоит химический элемент в великом труде Менделеева.

Приведем еще несколько примеров, чтобы в будущем юным химикам и было проще рассчитать необходимые данные:

  • заряд ядра атома натрия (na)равен 11, поскольку именно под этим номером его можно найти в таблице химических элементов.
  • заряд ядра фосфора (символическое обозначение которого P) имеет значение 15, ведь именно столько в его ядре протонов;
  • сера (с графическим обозначениемS) — соседка по таблице предыдущегоэлемента, поэтому и заряд ядра у нее 16;
  • железо (а найти мы его можем в обозначенииFe) стоит под номером 26, что говорит о таком же количестве протонов в его ядре, а значит и заряде атома;
  • углерод (он же C) находится под 6 номером периодической таблицы, что и указывает на нужную нам информацию;
  • магний имеет атомный номер 12, а в международной символике его знают как Mg;
  • хлор в периодической таблице, где он пишетсякак Cl, стоит под 17 номером, поэтому и его атомное число (а именно оно нам нужно) такое же — 17;
  • кальций (Ca), который так полезен для юных организмов, находим под номером 20;
  • заряд ядра атома азота (с письменным обозначениемN) равняется 7, именно в такой очереди он представлен в таблице Менделеева;
  • барий стоит под 56 номером, что и равно его атомной массе;
  • химический элемент селен (Se) имеет в своем ядре 34 протона, а это показывает, что именно таким будет заряд ядра его атома;
  • серебро (или в письменном обозначенииAg) имеет порядковыйномер и атомную массу 47;
  • если же нужно узнать заряд ядра атома лития (Li), то нужно обратиться к началу великого труда Менделеева, где он находится под номером 3;
  • аурум или всеми нами любимое золото (Au) имеет атомную массу 79;
  • у аргона же это значение равно 18;
  • рубидий имеет атомную массу в размере 37, а у стронция она равна 38.

Перечислять все составляющие периодической таблицы Менделеева можно еще очень долго, ведь их (этих составляющих) очень много.

Главное, что суть этого явления понятна, а если нужно будет вычислить атомное число калия, кислорода, кремния, цинка, алюминия, водорода, бериллия, бора, фтора, меди, фтора, мышьяка, ртути, неона, марганца, титана, то стоит только обратиться к таблице химических элементов и узнать порядковый номер того или иного вещества.

Источник: https://1000sovetov.ru/article_zaryad-yadra-atoma

Заряд ядра атома, теория и примеры

Заряд ядра атома, теория и примеры

Атомы любых веществ являются электрически нейтральными частицами. Атом состоит из ядра и совокупности электронов. Ядро несет положительный заряд, суммарный заряд которого равен сумме зарядов всех электронов атома.

Общие сведения о заряде ядра атома

Заряд ядра атома определяет местоположение элемента в периодической системе Д.И. Менделеева и соответственно химические свойства вещества, состоящего их этих атомов и соединений этих веществ. Величина заряда ядра равна:

где Z – номер элемента в таблице Менделеева, e – величина заряда электрона или.

Элементы с одинаковыми числами Z, но разными атомными массами называют изотопами. Если элементы имеют одинаковые Z, то у них ядро имеет равное число протонов, а если атомные массы различны, то число нейтронов в ядрах этих атомов разное. Так, у водорода имеется два изотопа: дейтерий и тритий.

Ядра атомов имеют положительный заряд, так как состоят из протонов и нейтронов. Протоном называют стабильную частицу, принадлежащую классу адронов, являющуюся ядром атома водорода. Протон – это положительно заряженная частица. Ее заряд равен по модулю элементарному заряду, то есть величине заряда электрона. Заряд протона часто обозначают как, тогда можно записать, что:

Масса покоя протона () примерно равна:

Подробнее о протоне можно узнать, прочитав раздел «Заряд протона».

Эксперименты по измерению заряда ядра

Первым заряды ядер измерил Мозли в 1913 г. Измерения были косвенными. Ученый определил связь между частотой рентгеновского излучения () и зарядом ядра Z.

где C и B – постоянные не зависящие от элемента для рассматриваемой серии излучения.

Напрямую заряд ядра измерил Чедвик в 1920 г. Он проводил рассеивание – частиц на металлических пленках, по сути, повторяя опыты Резерфорда, которые привели Резерфорда к построению ядерной модели атома.

В этих экспериментах – частицы пропускались через тонкую металлическую фольгу. Резерфорд выяснил, что в большинстве случаев частицы проходили сквозь фольгу, отклоняясь на малые углы от первоначального направления движения.

Это объясняется тем, что – частицы отклоняются под воздействием электрических сил электронов, которые имеют значительно меньшую массу, чем – частицы. Иногда, довольно редко – частицы отклонялись на углы превышающие 90o.

Этот факт Резерфорд объяснил наличием в атоме заряда, который локализован в малом объеме, и этот заряд связан с массой, которая много больше, чем у – частицы.

Для математического описания результатов своих экспериментов Резерфорд вывел формулу, которая определяет угловое распределение – частиц после их рассеяния атомами. При выводе этой формулы ученый использовал закон Кулона для точечных зарядов и при этом считал, что масса ядра атома много больше, чем масса – частицы. Формулу Резерфорда можно записать как:

где n – количество рассеивающих ядер на единицу площади фольги; N – число – частиц, которые проходят за 1 секунду через единичную площадку, перпендикулярно к направлению потока – частиц;– количество частиц, которые рассеиваются внутри телесного угла– заряд центра рассеяния;– масса – частицы; – угол отклонения – частиц; v – скорость – частицы.

Формулу Резерфорда (3) можно использовать для того, чтобы найти заряд ядра атома (Z), если провести сравнение числа падающих – частиц (N) с числом (dN) частиц рассеянных под углом , то функциябудет зависеть только от заряда рассеивающего ядра. Проводя опыты и применяя формулу Резерфорда Чедвик нашел заряды ядер платины, серебра и меди.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/fizika/zaryad-yadra-atoma/

Атомное ядро: заряд ядра

На этом сайте вы найдете репетитора!Nado5.ru — профессиональный инструмент для поиска репетитора.Здесь вы найдете подходящего репетитора быстро, удобно и бесплатно.Оставьте заявку или позвоните нам. Мы подберем репетитора, учитывая все пожелания.Или найдите репетитора в нашей базе самостоятельно, используя фильтр слева.
Получите консультацию по телефону.Мы всегда рады проконсультировать Вас по вопросам образования. Задайте свои вопросы профессионалам.Больше не надо ломать голову, к кому обратиться за помощью — для этого есть Nado5.ru!
Наши репетиторы помогут вам.Прислушайтесь к нашим советам, чтобы найти репетитора быстрее:Совет 1. Чтобы значительно упростить процесс поиска, достаточно лишь позвонить нам, и оператор найдет репетитора, который максимально подходит под ваши требования.
Мы подберем репетитора бесплатно!Прислушайтесь к нашим советам, чтобы найти репетитора быстрее:Совет 2. Если вы оставляете заявку на подбор репетитора, то в поле «ваши пожелания» укажите как можно больше подробностей и требований, чтобы мы могли найти самого подходящего вам репетитора.
Мы найдем репетитора в течение дня!Прислушайтесь к нашим советам, чтобы найти репетитора быстрее:Совет 3. Вопреки сложившемуся мнению, студент-репетитор очень хорошо справляется со своей задачей. Он более мобилен, цена ниже, и он с легкостью найдет общий язык с учеником.

Источник: http://www.nado5.ru/e-book/atomnoe-yadro-zaryad-yadra

Совет 1: Как определить заряд ядра атома

Совет 1: Как определить заряд ядра атома

В таблице Д.И.Менделеева, как в многоэтажном многоквартирном доме «живут» химические элементы, каждый из которых занимает свою собственную квартиру. Таким образом, каждый из элементов имеет определенный порядковый номер, указанный в таблице.

Нумерация химических элементов начинается слева направо, причем сверху. В таблице горизонтальные ряды называются периодами, а вертикальные столбцы – группами.

Это немаловажно, потому что по номеру группы или периода можно также дать характеристику некоторым параметрам атома .

Атом представляет собой химически неделимую частицу, но при этом состоящую из более мелких составных частей, к которым можно отнести протоны (положительно заряженные частицы), электроны (заряжены отрицательно) и нейтроны (нейтральные частицы).

Основная масса атома сосредоточена в ядре (за счет протонов и нейтронов), вокруг которого вращаются электроны. В целом атом электронейтрален, то есть в нем количество положительных зарядов совпадает с количеством отрицательных, следовательно, число протонов и электронов одинаково.

Положительный заряд ядраатома имеет место быть как раз за счет протонов.

Необходимо запомнить, что порядковый номер химического элемента количественно совпадает с зарядом ядраатома. Поэтому, чтобы определить заряд ядраатома необходимо посмотреть, под каким номером находится данный химический элемент.

Пример № 1. Определить заряд ядраатома углерода (С). Начинаем анализировать химический элемент углерод, ориентируясь на таблицу Д.И.Менделеева. Углерод находится в «квартире» № 6. Следовательно, он имеет заряд ядра +6 за счет 6 протонов (положительно заряженных частиц), которые располагаются в ядре. Учитывая, что атом электронейтрален, значит, электронов тоже будет 6.

Пример № 2. Определить заряд ядраатома алюминия (Al). Алюминий имеет порядковый номер — № 13. Следовательно, заряд ядраатома алюминия +13 (за счет 13 протонов). Электронов также будет 13.

Пример № 3. Определить заряд ядраатома серебра (Ag). Серебро имеет порядковый номер — № 47. Значит, заряд ядраатома серебра + 47 (за счет 47 протонов). Электронов также 47.

Совет 2: Как определить заряд ядра

Источник: https://how.qip.ru/others/sovet-1-kak-opredelit-zaryad-yadra-atoma

Атом

Атом

Атом — это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов.

Заряд ядра любого химического элемента равен произведению Z на e, где Z — порядковый номер данного элемента в периодической системе химических элементов, е — величина элементарного электрического заряда.

Электрон — это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10-19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К — оболочка, ближайшая к ядру.

Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных   электронов.

   Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц — протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика.

Протоны — это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента — водорода. Число протонов в ядре равно Z.

Нейтрон — это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А — Z, где А — массовое число данного изотопа (см.

Периодическая система химических элементов). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны — гамма-излучение. Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos — неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки.

Величина электрического заряда ядра равна Z-e, где е — элементарный электрический заряд, равный по величине заряду электрона (4,8·10-10 эл.-ст. ед.), и Z — атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см.

Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10-28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А.

Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А—Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z.

Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10-8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу.

Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С12, принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа.

Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы — электроны, протоны, атомы и т. д.

,— кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е.

характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона.

Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии.

 Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е0, в какое-либо из возбужденных состояний Ei происходит при поглощении определенной порции энергии  Еi — Е0.

Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= Ei— Еk где h — постоянная Планка (6,62·10-27 эрг·сек), v — частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

Источник: http://www.medical-enc.ru/1/atom.shtml

Как определить заряд ядра?

Как вы помните, такие вещи, как ядра атомов, обычно изучает химия, но и физика в том числе. Ведь есть ядерная физика, которая изучает ядро атома, ведь именно изучению ядра физикой было установлено, что ядро имеет способность делиться, и, таким образом, можно будет получить ядерную энергию. Когда был открыт атом, то считалось, что эта частица является неделимой.

Как установили, молекула состоит из атомов. Вот и решили, что атом уже не является неделимым, и всё состоит из атомов. Отсюда и название частицы «атом», ибо с греческого языка переводится, как «неделимый». Но потом уже доказали, позже, что атом в свою очередь тоже имеет в себе частицы. Это, электроны, протоны и нейтроны, которые в сущности и составляют заряд ядра, то есть.

частицами, которые и составляют это ядро.

Эрнест Резерфорд доказал, что можно заставить одно вещество превращаться в другое, когда поставил опыт, при котором из кислорода получил азот. Это был один из первых шагов, который произвёл триумф в науке.

Ну, не это ли философский камень, спрашивали в то время.

Вот с этого момента и пошли поиски в направлении того, чтобы найти способы получения новой энергии, которая на сегодняшний день составляет самую наиважнейшим звеном в цепи цивилизации.

Как я уже сказал вам выше, есть такое понятие, как заряд ядра, и уже сказал о частицах, из которых состоит атом.

так вот, что же касается определения заряда ядра химического элемента, то предлагаю вам открыть таблицу Менделеева. Дело в том, что порядковый номер указывает на заряд ядра.

Желаю успеха!

Ответил Валентин 1 месяц назад

Источник: http://qalib.ru/a/kak-opredelit-zaryad-yadra

Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Cтраница 1

Положительный заряд ядра атома, а также число электронов атома численно равны порядковому ( атомному) номеру элемента. По мере увеличения атомного номера химические свойства элементов периодически повторяются.  [1]

Положительные заряды ядра атома и отрицательные заряды электронов, взаимно уравновешивая друг друга, составляют атом.  [2]

Положительный заряд ядра атома этого элемента, естественно, также равен 101 единице.  [3]

Положительный заряд ядра атома численно равен его порядковому номеру в периодической системе. Таким образом, число электронов, равное числу положительных зарядов ядра атома, численно равно также порядковому номеру элемента.  [4]

Положительные заряды ядер атомов аргона ( 18), калия ( 19), кобальта ( 27), никеля ( 28), теллура ( 52) и иода ( 53) точно совпали с порядковыми номерами этих элементов в таблице Менделеева.  [5]

Величинуположительного заряда ядра атома элемента определяют опытным путем. Наименьшее ее значение, равное единице, получено для водорода. Следовательно, вокруг ядра атома водорода вращается один электрон.

Определены заряды ядер атомов и других элементов. Так, величина положительного заряда ядра атома магния 12; следовательно, вокруг его ядра вращается 12 электронов.

Величина положительного заряда ядра атома фосфора 15; следовательно, вокруг его ядра вращается 15 электронов.  [6]

Величинуположительного заряда ядра атома элемента определяют опытным путем. Наименьшее ее значение, равное единице, получено для водорода. Следовательно, вокруг ядра атома водорода вращается один электрон.

Определены заряды ядер атомов и других элементов. Так, величина положительного заряда ядра атома магния 12; следовательно, вокруг его ядра вращается 12 электронов.

 [7]

Чему равенположительный заряд ядра атома.  [8]

С ростомположительного заряда ядра атомов в периоде растет способность их к присоединению электронов.  [9]

Сравнительные размеры [ IMAGE ] Схема образования по.  [10]

Вертикальной чертой отделенположительный заряд ядра атома, а скобками условно обозначены отдельные электронные слои. Цифра перед скобкой указывает на количество электронов в данном слое.  [11]

Вмалых периодахс ростомположительного заряда ядер атомов возрастает число электронов на внешнем уровне ( от 1 до 2 — в первом периоде, и от 1 до 8 — во втором и третьем периодах), что объясняет изменение свойств элементов: в начале периода ( кроме первого периода) находится щелочной металл, затем металл и — ческие свойства постепенно ослабевают и усиливаются свойства неметаллические.  [12]

Таким образом, числоположительных зарядов ядра каок-дого атома, а также число вращающихся вокруг ядра электро — нов равны порядковому номеру элемента.  [13]

Смещенные электроны образуют сположительными зарядами ядер атомов пары связанных друг с другом электрических зарядов, которые называются упругими диполями. Также мгновенно упругие диполи исчезают, если диэлектрик — ( конденсатор) выключить из-под напряжения. Процесс образования упругих диполей называется электронной поляризацией. Этот вид поляризации происходит у всех диэлектриков.  [15]

Страницы:      1    2    3    4

Источник: http://www.ngpedia.ru/id33136p1.html

__________________________________________

novpedkolledg2.ru

Заряд ядра атома, теория и примеры

Атомы любых веществ являются электрически нейтральными частицами. Атом состоит из ядра и совокупности электронов. Ядро несет положительный заряд, суммарный заряд которого равен сумме зарядов всех электронов атома.

Общие сведения о заряде ядра атома

Заряд ядра атома определяет местоположение элемента в периодической системе Д.И. Менделеева и соответственно химические свойства вещества, состоящего их этих атомов и соединений этих веществ. Величина заряда ядра равна:

    \[q=Ze \qquad (1)\]

где Z – номер элемента в таблице Менделеева, e – величина заряда электрона или q_e.

Элементы с одинаковыми числами Z, но разными атомными массами называют изотопами. Если элементы имеют одинаковые Z, то у них ядро имеет равное число протонов, а если атомные массы различны, то число нейтронов в ядрах этих атомов разное. Так, у водорода имеется два изотопа: дейтерий и тритий.

Ядра атомов имеют положительный заряд, так как состоят из протонов и нейтронов. Протоном называют стабильную частицу, принадлежащую классу адронов, являющуюся ядром атома водорода. Протон – это положительно заряженная частица. Ее заряд равен по модулю элементарному заряду, то есть величине заряда электрона. Заряд протона часто обозначают как q_p, тогда можно записать, что:

    \[q_p=\left|e\right|=1,6\cdot {10}^{-19}Kl\]

Масса покоя протона (m_p) примерно равна:

    \[m_p=1,6\cdot {10}^{-27}\ kg\]

Подробнее о протоне можно узнать, прочитав раздел «Заряд протона».

Эксперименты по измерению заряда ядра

Первым заряды ядер измерил Мозли в 1913 г. Измерения были косвенными. Ученый определил связь между частотой рентгеновского излучения (\nu) и зарядом ядра Z.

    \[\sqrt{\nu}=CZ-B \qquad (2)\]

где C и B – постоянные не зависящие от элемента для рассматриваемой серии излучения.

Напрямую заряд ядра измерил Чедвик в 1920 г. Он проводил рассеивание \alpha – частиц на металлических пленках, по сути, повторяя опыты Резерфорда, которые привели Резерфорда к построению ядерной модели атома.

В этих экспериментах \alpha – частицы пропускались через тонкую металлическую фольгу. Резерфорд выяснил, что в большинстве случаев частицы проходили сквозь фольгу, отклоняясь на малые углы от первоначального направления движения. Это объясняется тем, что \alpha – частицы отклоняются под воздействием электрических сил электронов, которые имеют значительно меньшую массу, чем \alpha – частицы. Иногда, довольно редко \alpha – частицы отклонялись на углы превышающие 90o. Этот факт Резерфорд объяснил наличием в атоме заряда, который локализован в малом объеме, и этот заряд связан с массой, которая много больше, чем у \alpha – частицы.

Для математического описания результатов своих экспериментов Резерфорд вывел формулу, которая определяет угловое распределение \alpha – частиц после их рассеяния атомами. При выводе этой формулы ученый использовал закон Кулона для точечных зарядов и при этом считал, что масса ядра атома много больше, чем масса \alpha – частицы. Формулу Резерфорда можно записать как:

    \[\frac{dN}{N}=n{\left(\frac{Ze^2}{m_{\alpha}v^2}\right)}^2\frac{d\Omega}{{\sin}^4\frac{\theta}{2}} \qquad (3)\]

где n – количество рассеивающих ядер на единицу площади фольги; N – число \alpha – частиц, которые проходят за 1 секунду через единичную площадку, перпендикулярно к направлению потока \alpha – частиц; dN – количество частиц, которые рассеиваются внутри телесного угла d\Omega ={\sin \theta d\theta d\varphi}; Ze – заряд центра рассеяния; m_{\alpha} – масса \alpha – частицы; \theta – угол отклонения \alpha – частиц; v – скорость \alpha – частицы.

Формулу Резерфорда (3) можно использовать для того, чтобы найти заряд ядра атома (Z), если провести сравнение числа падающих \alpha – частиц (N) с числом (dN) частиц рассеянных под углом \theta, то функция \frac{dN}{N} будет зависеть только от заряда рассеивающего ядра. Проводя опыты и применяя формулу Резерфорда Чедвик нашел заряды ядер платины, серебра и меди.

Примеры решения задач

ru.solverbook.com

Заряд ядра - Справочник химика 21

    Массовое число и порядковый номер элемента (число протонов) обозначают числовыми индексами слева от символа химического элемента верхний индекс означает массовое число, нижний — заряд ядра. [c.9]

    Записать электронные формулы атамов элементов с зарядом ядра а) 8 б) 13 в) 1электронами валентных орбиталей этих атомов. [c.44]

    Атом представляет собой сложную микросистему находящихся в движении элементарных-частиц. Он состоит из положительно заряженного ядра и отрицательно заряженных электронов. Носителем положительного заряда ядра является п ротон. В ядра атомов всех элементов, за исключением ядра легкого изотопа водорода, входят протоны и н е й тр о к ы. Основные характеристики электрона, протона и нейтрона приведены в табл. 1. [c.8]

    Величина заряда ядра получила название порядкового номера элемента, или атомного номера. Сразу же стало понятно, что, располагая элементы в порядке увеличения атомной массы, Менделеев по сути дела расположил элементы в порядке возрастания их атомных номеров. О тех двух случаях, когда он поместил атомы с большей массой впереди атомов с меньшей массой (см. гл. 8), поскольку эти атомы с меньшей массой тем не менее имеют больший порядковый номер, мы будем говорить особо. [c.156]

    При дальнейшем возрастании эффективного заряда ядра у еле-дующего после кальция элемента — скандия состояние Зd становится энергетически более выгодным, чем 4р. [c.27]

    Еще в 1920 г. Чедвик экспериментально доказал равенство заряда ядра па-рядковому номеру элемента.— Прим. перев. [c.154]

    Изменение атомных и ионных радиусов в периодической системе имеет периодический характер (рис. 17). В периодах атомные и ионные радиусы по мере увеличения заряда ядра в общем уменьшаются. Наибольшее уменьшение радиусов наблюдается у элементов малых периодов, так как у них происходит заполнение внешнего электронного слоя. В больших же периодах в пределах семейств й- и /-элементов наблюдается более плавное уменьшение радиусов. Это уменьшение называется соответственно й- и -сжатием. [c.38]

    На этом этапе, наконец, стало возможным заменить определение элемента, данное Бойлем. Согласно Бойлю, элемент — это вещество, которое нельзя разложить на более простые вещества, новое определение элемента звучит так элемент — это совокупность атомов с одинаковым зарядом ядра. [c.156]

    У следующих за лантаном 14 элементов (Се—Ьи) вследствие роста эффективного заряда ядра 4/-состояние энергетически более выгодное, чем 5 -состояние (рис. 11). Поэтому у этих элементов происходит заполнение 4/-орбитали (второй снаружи квантовый слой). Затем продолжается заполнение 5 -орбитали (НГ—Hg). И этот период завершается шестью 5-элементами (Т1—Ни). Таким образом, в 6-м периоде кроме двух 5-элементов, десяти -элементов и шести р-элементов располагаются еще четырнадцать -элементов. [c.28]

    Химический элемент — это вид атомов, характеризующихся определенным зарядом ядра. [c.7]

    Связь между атомами разных элементов всегда более или менее полярна, что обусловлено различием размеров и электроотрица-т(льностей атомов. Например, в молекуле хлорида водорода НС1 стязующее электронное облако смещено в сторону более электро-огрицательного атома хлора. Вследствие этого заряд ядра водорода уже не компенсируется, а на атоме хлора электронная плотность становится избыточной по сравнению с зарядом ядра. Иными словами, атом водорода в НС1 поляризован положительно, а атом хлора отрицательно на атоме водорода возникает положительный заряд, на атоме хлора — отрицательный. Этот заряд б, называемый эффективным, можно установить экспериментально. Согласно имеющимся данным эффективный заряд на атоме водорода молекулы H I составляет бн = +0,18, а на атоме хлора 6 i = —0>18 абсолютного за-р 1да электрона. Можно сказать, что связь в молекуле НС1 имеет на 18% ионный характер, т. е. полярна. Ниже приведены значения эффективных зарядов на атомах кислорода в оксидах элементов 3-го периода  [c.80]

    Зависимость атомных радиусов от заряда ядра атома 2 имеет периодический характер, В пределах одного периода с увеличением 2 проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах (радиусы атомов приведены в нм)  [c.99]

    Изложенное показывает, что по мере роста заряда ядра происходит закономерная периодическая повторяемость сходных электронных структур, а следовательно, и повторяемость свойств элементов. [c.28]

    В настоящее время периодический закон формулируется следующим образом свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов. [c.28]

    В подгруппах элементов радиусы атомов и однотипных ионов в общем увеличиваются. Однако увеличение радиусов при том же возрастании заряда ядра в подгруппах 5- и р-элементов больше такового в подгруппах -элементов, например в V группе  [c.38]

    Ес. 1и бы не было влияния кристаллического поля, то радиусы ионов должны были бы монотонно уменьшаться по мере увеличения заряда ядра (порядкового номера элемента), что на рис. 211 показано пунктирной кривой. Она проходит через точки, соответствующие сферически симметричным ионам Са2+ ( ), Мп2+ 2п2- - ( 10). [c.509]

    Период полураспада трансурановых элементов быстро уменьшается с ростом заряда ядра. Так, для наиболее устойчивого изотопа Ри период полураспада составляет 70 млн. лет, Вк — 7000 лет, Ез — 2 года, Мс1 — 80 дней. Для изотопов Ки период полураспада оценивается в 70—0,1 с, для 105-го элемента 40— 1,5 с. [c.664]

    Потому что 1) прн переходе от Ве к В возрастает заряд ядра 2) электронные конфигурации с полностью заполненным подуровнем обладают повышенной устойчивостью 3) при переходе от Ве к В уменьшается размер атома. [c.47]

    Приводимые в этом разделе химические символы обозначают не атомы элементов, а их ядра. Нижний индекс указывает заряд ядра, численно совпадающий с но.мером элемента в периодической системе элементов, верхний — массовое число А, представляющее собой сумму 2 + Л/, где 2 — число протонов (р) в ядре, определяющее заряд ядра, а М-—число нейтронов (п) в ядре. Ядра всех атомов данного элемента имеют одинаковый заряд, т. е. содержат одно и то же число протонов число нейтронов может быть различным. [c.47]

    Электроны наружного слоя, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних. Атомы, лишившиеся одного или нескольких электронов, становятся заряженными положительно, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот, атомы, присоединившие [c.99]

    В пределах одной подгруппы радиусы ионов одинакового заряда возрастают с увеличением заряда ядра. Это иллюстрируется следующими примерами (радиусы ионов даны в нм)  [c.100]

    Английский физик Чарльз Гловер Баркла (1877—1944) сделал следующий важный шаг. Он установил, что при рассеивании рентгеновских лучей различными элементами образуются пучки рентгеновских лучей, которые проникают в вещество на характеристические величины. Каждый элемент создает особый набор рентгеновских лучей. В трубке Крукса источником таких рентгеновских лучей становился под действием пучка катодных лучей антикатод (который изготавливали из различных металлов). Другой английский физик, Генри Гвин Джефрис Мозли (1887—1915), используя в качестве антикатода различные элементы, в 1913 г. установил, что чем больше атомная масса элемента, тем меньше длина волны образующихся рентгеновских лучей. Эта обратная зависимость, доказывал Мозли, связана с величиной положительного заряда ядра атома. Чем больше заряд, тем короче длина волны рентгеновских лучей. [c.156]

    Исходя из длины волны, можно вычислить заряд ядра атома любого элемента. Таким образом в итоге удалось показать, что згряд ядра водорода равен +1, гелия +2, лития +3 и так далее вплоть до урана , заряд ядра которого равен +92. [c.156]

    Характер заполнения орбиталей атомов К, Са, и Зс показывает, что энергия электронов зависит не только от заряда ядра, но и от взаимодействия между электропами. На рис. 11 показана зависимость энергии атомных орбиталей от порядкового номера элемента (логарифмическая шкала). За единицу энергии электрона принято значение 13,6 эВ (энергия электрона пенозбуждеиного атО ма водорода). Анализ рис. II показывает, что с уаеличениеу порядкового но мера эле мента Z энергия электронов данного состояния (1,5, 2 , 2/ и т. д.) уменьшается. Одпако характер этого уменьшения для электронов разных энергетических состояний различен, что выражается в пересечении хода кривых. В частности, поэтому при Л = 19 и 20 кривые энергии 45-электрона лежат ниже кривой энергии З -электрона, а при 2 =. 21 кривая энергии Зсг-электрона лежит ииже к(1Ивой 4/7-электрона. Таким образом, у калия и кальция заполняется 4х-орби аль, а у скандия 3 /-орбиталь. [c.27]

    Наряду с резко выраженными максимумами и минимумами на кривой энергии ионизации наблюдаются слабо выраженные, что можно объяснить с помощью двух взаимосвязанных представлений об экранировании заряда ядра и о пронгкновении электронов к ядру. [c.32]

    Э( х )ект экранирования заряда ядра обусловлен наличием в атоме между данным электроном и ядром других электронов, которые экранируют, ослабляют воздействие на этот электрон положительного заряда ядра и тем самым ослабляют связь его с ядром. Понятно, чтб экранирование возрастает с увеличением числа внут-эенних электронных слоев. [c.32]

    Уменьшение энергии ионизации в подгруппах 5- и р-элементов объясняется усиливающимся (по мере увеличения числа электронных слоев) экранированием заряда ядра электронами, предшествующими внешиим электронам. [c.35]

    При позитронном распаде заряд ядра уменьшается на единицу, а массовое число (как и при Р -распаде) не изменяется. Примером р""-заспада является превраш,ение легкого изотопа углерода-И в изотоп бора-11  [c.658]

    Наибольшие изменения исходного ядра наблюдаются при альфа-оаспаде. Выделение ядром а-частицы (ядра гелия-4) приводит к об-зазованию изотопа элемента с зарядом ядра на две единицы меньше 1СХ0ДН0Г0. Массовое число при этом уменьшается на четыре единицы. а-Распад наиболее характерен для тяжелых элементов, например для изотопа урана-234  [c.658]

    При прочих равных условиях потенциал нонизации тем больше, чем больше заряд ядра и меньше радиус атома или иона. С этой точки зрения в периоде с ростом заряда ядра должна наблюдаться тенденция к возрастанию потенциала иоиизацни (при удалении электрона с одним н тем же главным квантовым числом). Действительно, значения и /2 для Ве меньше, чем соответствующие значения для С. [c.43]

    Атомы, обладающие одинаковым зарядом ядра, по разными массои1)1ми числами, называются изотопами (например, С и [c.48]

    Решение. Заряд ядра атома искомого элемента 92 численно совпадает с номером элемента п псриояптеском снстемс. Элемент Л 92 — урап, символ — и. [c.48]

    Число элсктронон в атоме равно заряду ядра в данном случае число электронов равно 92. [c.48]

    Это открытие дало повое обоснование расположению элементов в периодической системе. Вместе с тем оно устраняло и кажущееся противоречие в системе Менделеева — положение некоторых элементов с большей атомной массой впереди элементов с меньшей атомной массой (теллур и иод, аргон и калнй, кобальт и никель). Оказалось, что противоречия здесь нет, так как место элемента в системе определяется зарядом атомного ядра. Было экспериментально установлено, что заряд ядра атома теллура равен 52, а атома иода—53 поэтому теллур, несмотря иа большую атомную массу, должен стоять впереди иода. Точно так же заряды ядер аргона и калия, никеля и кобальта полностью отвечают по-следоиатольмостп расположения этих элементов в системе. [c.61]

    Упомянутые выше нарушения нормального порядка заполнения энергетических состояний в атомах лантана (появление Ъс1-, а не 4/-электрона) и керня (появление сразу двух 4/-электр(люи) и аналогичные особенности в построении электронных структур атомов элементов седьмого периода объясняются следующим. При увеличении заряда ядра электростатическое притяжение к ядру электрона, находящегося на данном энергетическом подуровне, становится более сильным, и энергия электрона уменьшается. При этом энергия электронов, находяншхся на разных подуровнях, иэмеипстся неодинаково, поскольку по отношению к этим электронам заряд ядра экранируется в разной степени. В частности, энергия 4/-электронов уменьшается с ростом заряда ядра более резко, чем энергия 5 -электроиов. (см. рис. 24). Поэтому оказывается, что у лантана (2 = 57) энергия 5с электронов ниже, а у церия (2 = 58) выше, чем энергия 4/-электронов. В соответствии с этим, элек- [c.98]

    Распад. --Частица — электрон. р -Распаду предшествует процесс Че + р, протекающий в ядре таким обраяом, при испускании электрона заряд ядра увеличивается на единицу, а массовое число ие изменяется. Дочернее ядро — изобар исходного—принадлежит элементу, смещеино.му на одну клетку к концу периодической системы от места матсрниского элемента Э Че . [c.49]

    Электронный захват. При захвате ядром электрона с ближайшего к ядру /(-слоя в ядре уменьшается число протонов вследствие протекания процесса /7 + е" = я. Заряд ядра уменьшается на единицу, а массовое число остается прежним. Дочернее ядро принадлежит элементу (изобару исходного элемента), смещенному по отнои1епию к материнскому на одну клетку к началу периодической системы элементов лэ + Ое- лэ + /гу. [c.49]

    Ял )о атома некоторого элемента содержит 16 нейтронов, а электронная оболочки этого атома — 15 эле]гг110П0в. Назвать элемент, изотопом ь оторого является данный атом. Привести запись его символа с указанием заряда ядра и массового числа. [c.51]

    Был установлен физический смысл порядкового номера элемента в периодической системе порядковый номер оказа.лся важнейшей константой элемента, выралсаюш ей положительный заряд ядра его атома. Из электронейтральности атома следует, что и число вращающихся вокруг ядра электронов равно порядковому номеру элемента.  [c.61]

    Свойстна элементов а образуемых ими простых и сложных веществ ниходятсп в периодической зависимости от заряда ядра атомов элементов. [c.61]

    Наиболее устойчивое состояние электрона в атоме соответствует минимальному возможному значению его энергии. Любое другое его состояние является в о з б у ж д е и н ы м, неустсзйчнвым нл него электрон самопроизвольно переходит в состояние с более иизкои энергией. Поэтому в невозбужденном атоме водорода (заряд ядра 2 = 1) единственный электрон нахо.днтся в самом низком из возможных энергетических состояний, т. е. на 15-подуровне.. Электронную структуру атома водорода мо кно представит ) схемой [c.88]

    Прн увеличении заряда ядра еще иа единицу, т. е. прн переходе к углероду (Z = 6), ЧИСЛО электронов на 2 -подуровне возрастает до 2 электронное строение атома углерода выражается формулой ls 2,s 2p . Однако этой формуле могла бы соогиетсгво-вать любая из трех схем  [c.90]

    Последовательность заполнения атомных электронных орбита-лей в зависимости от значений главного и орбитального квантовых чисел была исследована советским ученым В. М. Клечков-ским, который установил, что энергия эле[орбиталей происходит от орбиталей с меньшим значением суммы главного и орбитального квантовых чисел (л + /) к орбиталям с большим значением этой суммы. [c.93]

    С началом застронки нового электронного слоя, более удален ного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются. Приведем в качестве примера значения атомных радиусов (в нм) элементов некоторых главных подгрупп  [c.99]

chem21.info

Заряд ядра и порядковый номер

В 1906 г. Чарлз Гловер Баркла установил, что различные элементы испускают определенные серии характеристических рентгеновских лучей. Уильям Генри Брэгг и его сын Уильям Лоренс Брэгг смогли объяснить это в 1912 г. дифракцией рентгеновских лучей кристаллическими веществами. В 1913 г. Генри Мозли, используя в качестве антикатодов в рентгеновских трубках различные элементы, получил по методу Брэггов эмиссионные спектры этих элементов. При этом он обнаружил, что длины волны таких рентгеновских лучей уменьшаются с увеличением атомной массы излучающего элемента. Связь между увеличением атомной массы элементов и уменьшением длины волны зависела от величины положительного заряда ядра атома. Мозли составил диаграмму и показал, что, зная длину волны рентгеновских лучей, можно рассчитать электрический заряд ядра элемента. Например, заряд ядра равен для водорода +1, гелия +2, лития +3, урана +92. Величина заряда ядра соответствует порядковому номеру, понятие о котором ввел Иоганнес Роберт Ридберг, чтобы исправить выявленное нарушение закономерности в расположении элементов в периодической системе. Некоторые элементы с большей атомной массой размещены в соответствии с зарядом ядра в системе перед элементами с меньшей массой (Аr — перед К, Со — перед Ni, Те — перед I). Именно в этом заключается физический смысл порядкового номера элемента.

Эти новые данные привели в XX в. к изменению представлений об элементе: элементом стали называть вещество, все атомы которого имеют один и тот же порядковый номер. Однако это определение по-прежнему включало в себя представление о том, что элемент состоит из атомов одного вида и что он не подвергается дальнейшему разложению при химическом воздействии. Уже к 1913−1914 гг., за исключением шести порядковых номеров — 43, 61, 72, 75, 85, 87,— все места в периодической системе были заняты открытыми элементами. К 1945 г. эти пустоты в периодической системе тоже были заполнены.

Кульминационным моментом в исследовании электронов и атомного ядра явилось создание в 1913 г. модели атома Бора и Резерфорда.

Нильс Бор (родился в Копенгагене в 1885 г.) был учеником Резерфорда и в своих работах широко использовал предложенную Резерфордом модель атома, а также разработанную Максом Планком в 1900 г. квантовую теорию испускания света и развитые Эйнштейном теории квантовой структуры светового излучения и фотоэффекта.

Планк и Эйнштейн пришли к выводу, что вещество может испускать или поглощать свет (т.е. энергию) не в любых количествах, а только порциями — квантами (энергия которых пропорциональна частоте излучения hν). Когда, например, электрон атома водорода, находящийся на большой орбите, испускает квант света, то в результате этого он переходит на орбиту с меньшим радиусом, которая соответствует состоянию атома с меньшим запасом энергии.

Отсюда Бор сделал вывод, что атом водорода может существовать только в совершенно определенных «стационарных» состояниях. Основное, или нормальное, состояние атома датский физик определял как состояние, обладающее минимальным запасом энергии и соответствующее наиболее стабильному состоянию атома. Состояние с более высокой энергией Бор называл возбужденным. При переходе атома из более высокого (с энергией Е») в более низкое (Е’) энергетическое состояние энергия испускаемого излучения (кванта света) отвечает разности Е»—Е’. Следовательно, частота излучения определяется уравнением hν = Е» — Е’. Это уравнение относится и к поглощению света атомом, а также к поглощению или испусканию света молекулой.

Ваш отзыв

Вы должны войти, чтобы оставлять комментарии.

khimie.ru