Проверка конденсатора трамблера на автомобилях ВАЗ 2105, 2107. Зажигание конденсатор


Проверка конденсатора на автомобилях ВАЗ 2105, 2107

Основной неисправностью конденсатора в контактной системе зажигания является его «пробой» на «массу». При этом двигатель автомобиля может не запуститься вовсе или будет запускаться и глохнуть, или внезапно заглохнет во время движения. Характерными внешними признаками неисправности являются: сильное искрение между контактами прерывателя при пуске двигателя и очень слабая искра или полное ее отсутствие.

Существует несколько способов проверки конденсатора на автомобилях ВАЗ 2105, 2107.

— При помощи контрольной лампы.

Отсоединяем провод, идущий с катушки зажигания и провод конденсатора от трамблера (они крепятся на одном выводе «К» прерывателя). Между ними подключаем контрольную лампу, включаем зажигание и наблюдаем за ней. Загорелась – конденсатор «пробит» и подлежит замене. Нет – исправен.

1- катушка зажигания, 2 — крышка трамблера, 3 — трамблер, 4 — конденсатор.

— При помощи провода от катушки зажигания.

Как и в способе, описанном выше, отсоединяем провод от катушки и провод конденсатора от вывода на трамблере. Включаем зажигание. Соприкасаем наконечники проводов. Появилось искрение – конденсатор неисправен. Нет – все в порядке.

1 — катушка зажигания, 2 — крышка трамблера, 3 — трамблер, 4 — конденсатор.

— При помощи заряда током высокого напряжения и последующим разрядом на «массу».

Проворачиваем коленчатый вал так, чтобы контакты прерывателя в трамблере сомкнулись. Отсоединяем от трамблера только провод конденсатора. Включаем зажигание. Подносим к наконечнику провода конденсатора наконечник центрального высоковольтного провода от катушки зажигания. Отверткой размыкаем контакты прерывателя (или можно рукой немного повернуть распределитель, чтобы контакты разошлись). Между наконечником высоковольтного провода и наконечником провода конденсатора проскочит искра – конденсатор зарядится током высокого напряжения. Подносим наконечник провода конденсатора к его корпусу. Появление разрядной искры со щелчком свидетельствует о нормальном состоянии конденсатора. Искры нет – конденсатор неисправен.

Примечания и дополнения

— Конденсатор на автомобилях ВАЗ 2105, 2107 и их модификациях с контактной системой зажигания устанавливается на трамблере (30.3706-01) параллельно контактам прерывателя и служит для повышения вторичного напряжения и предотвращения обгорания контактов. Он заряжается при размыкании контактов и разряжается через вторичную обмотку катушки зажигания, чем вызывает повышения вторичного напряжения.

— Параметры работы конденсатора автомобилей ВАЗ 2105, 2107: емкость конденсатора замеряется в диапазоне частоты 50 – 1000 Гц и находится в пределах 0,20-0,25 мкФ, сопротивление изоляции при температуре (100±2)ºС и напряжении постоянного тока 100 В должно быть более 1 МОм/мкФ.

Еще статьи ремонту автомобилей

— Проверка зазора между контактами прерывателя на автомобилях ВАЗ 2108, 2109, 21099

— Установка момента зажигания на автомобилях ВАЗ 2105, 2107

— Схема контактной системы зажигания автомобилей ВАЗ 2105, 2107

— Схема контактной системы зажигания автомобилей ВАЗ 2101, 2102, 2103, 2121

— Принцип действия контактной системы зажигания

twokarburators.ru

Как проверить конденсатор на работоспособность мультиметром и без прибора

Конденсатор — небольшая, но важная часть электронных систем автомобиля. Он отвечает за накопление и сохранение электрического тока, создаёт определённый показатель напряжения в компонентах и решает ряд других задач. Увы, это изделие иногда выходит из строя. Работа с электрическими компонентами — опасное дело, но при необходимости работоспособность конденсатора можно легко проверить.

Как работает этот компонент

Изделия защищают электронные компоненты от разного рода помех и используются во множестве систем вашей машины. Ключевой функцией приспособления является фильтрация — например, в автоакустике. Без конденсатора музыкальная система будет работать плохо: возникнут посторонние шумы, помехи и изменения громкости. Все это является следствием скачков напряжения в электросети авто.

Конденсаторы есть во многих частях автомобиля. Они играют роль буферов между аккумуляторами и другими электронными приспособлениями. Без такого изделия невозможно функционирование не только акустики, но и контактного механизма в распределителе зажигания.

На фото: схема системы батарейного зажигания с цифровым обозначением компонентов:

  1. Аккумулятор.
  2. Включатель стартера.
  3. Включатель зажигания.
  4. Первичная обмотка.
  5. Вторичная обмотка.
  6. Катушка зажигания.
  7. Распределитель.
  8. Прерыватель.
  9. Конденсатор.
  10. Свеча зажигания.
Схема батарейного зажигания. Конденсатор отмечен цифрой «9»

Типы автомобильных конденсаторов

  1. Для генератора. Подаёт электричество в работающий генератор, предотвращает перепады напряжения в зажигании, ликвидирует шумы радиоприёмника. Если в генераторе авто нет конденсатора, проезжающий мимо транспорт вызовет сильный шум на радио. Благодаря этому изделию удаётся защититься от дискомфорта в пути.Так выглядит автомобильный конденсатор
  2. Для сабвуфера. Автоусилитель обеспечивает более полное насыщение баса и расширяет диапазон воспроизведения частот, однако он сильно увеличивает потребление тока, что приводит к проблемам со светом фар и плохому качеству воспроизведения низких частот. Хорошо работающий конденсатор — гарантия защиты от проблем.

Как понять, что нужна диагностика прибора

О неисправности конденсатора свидетельствуют разные признаки. Фары, мигающие в такт басам автомобильной акустики, означают, что электронные компоненты авто не получают достаточного напряжения. В ряде случаев сигналы начинают искажаться, отдельные компоненты машины работают некорректно.

Конденсатор зажигания отвечает за выработку искры, которая воспламеняет топливовоздушную смесь в цилиндре двигателя. Если искра имеет слабый красный цвет и появляется неравномерно, если не удаётся нормально завести авто — вполне вероятно, что возникли проблемы с конденсатором.

Важно не допускать проблем с конденсатором зажигания. Они возникают по трём причинам:

  • если изделие потеряло часть ёмкости,
  • если возник внутренний обрыв,
  • если произошло короткое замыкание.

Первые два варианта особенно коварны, поскольку зажигание не сразу выходит из строя. Функционирование компонентов продолжается, хотя искра уже не может иметь нужного уровня мощности. Главные признаки поломки в такой ситуации — неустойчивость работы двигателя на холостом ходу, проблемы с запуском. Обязательно проверьте конденсатор и при необходимости замените его! Если этого не сделать, искры от прерывателя вызовут подгорание контактов, что выведет силовой агрегат из строя.

Как проверить работоспособность

Надёжный способ выявить неисправность — воспользоваться омметром или мультиметром в режиме омметра. Для наиболее полного тестирования подготовьте следующие инструменты:

  • сам измерительный прибор;
  • переносную лампу;
  • заводную ручку.
Конденсатор системы зажиганияРасположение конденсатора в системе зажигания

Основная проверка выполняется в следующей последовательности.

  1. Переводим омметр в режим верхнего предела измерений.
  2. Подключаем один вывод конденсатора к корпусу для разрядки. Один из щупов омметра соединяем с наконечником провода, другой — с корпусом.
  3. Если показатель быстро отклоняется к «нулю», а затем плавно возвращается к «бесконечности» – всё в порядке. При смене полярности показатель быстро стремится к нулю. Если сразу же высветилось значение «бесконечности», требуется замена.
Омметр и конденсаторПодключаем омметр к конденсатору

Инструкция по проверке автомобильного конденсатора на видео

Проверка без мультиметра

  1. Отключаем от прерывателя провода, идущие от конденсатора и катушки зажигания. Тут пригодится переносная лампа. Чтобы проверить изделие, присоедините её к зажиму прерывания, затем активируйте зажигание. Произошло включение лампы? Конденсатор работает неправильно.
  2. Ещё один метод проверки работоспособности изделия — зарядка конденсатора катушки зажигания током высокого напряжения и последующая разрядка на корпус. Если между массой и проводом конденсатора появилась искра и раздался характерный щелчок, всё в порядке. Реакции нет? Значит, в конденсаторе есть пробой.
  3. Отсоедините чёрный провод от зажима прерывателя, который идёт от катушки зажигания. Отключите от прерывателя провода конденсатора. Включите зажигание и прикоснитесь одним проводом к другому. Если появится искра — что-то не так. Скорей всего дело в пробое конденсатора.
  4. Заводной ручкой поверните коленвал ДВС и снимите крышку с распределителя зажигания. Включите зажигание. Можно оценить работу конденсатора, следя за возникающими здесь искрами. Если возникла поломка, контакты прерывателя сильно заискрят. Ещё один признак неисправности — слабое искрение между корпусом и главным проводом высокого напряжения.

Состояние конденсатора можно без труда проверить даже в дороге. Возите с собой мультиметр и будьте готовы пустить его в ход — так вы избавитесь от дискомфорта при езде и избежите риска серьёзной поломки.

Дмитрий Буймистров Здравствуйте! Мое имя Дмитрий, по образованию - журналист. Специализируюсь на автомобильной тематике - карьеру начинал в интернет-магазине автомобильных комплектующих, да и сам являюсь автолюбителем. Оцените статью: Поделитесь с друзьями!

autozam.ru

Система зажигания автомобиля – доработка для лучшего пуска двигателя

Самым ответственным моментом при эксплуатации автомобиля является пуск двигателя. Особенно актуален этот вопрос в зимнее время года, когда на улице стоят большие морозы. Все смазочные материалы, в том числе и масло в картере двигателя внутреннего сгорания, теряют вязкость, и создают чрезмерную дополнительную механическую нагрузку на стартер.

Рекомендаций по решения этой проблемы в Интернете представлено великое множество, от подогрева масла в картере двигателя дополнительным нагревателем, до впрыскивания в цилиндры двигателя перед пуском легко воспламеняющихся веществ. Совершенствуются коммутаторы системы зажигания, делают много искровой режим зажигания, оптимизируют взаимное расположение и форму электродов свечей.

Но все это не дает максимального эффекта по одной простой причине, во время пуска двигателя напряжение бортовой сети автомобиля падает до 9,5 V и соответственно значительно падает величина высокого напряжения на выходе катушки зажигания. Предложенная доработка системы зажигания позволяет устранить этот недостаток.

Принцип работы системы зажигания автомобиля

Рассмотрим часть схемы электрооборудования автомобиля, составляющую систему зажигания. От аккумулятора напряжение положительной полярности, через предохранитель поступает на контакты замка зажигания и реле зажигания.

Когда ключ из замка зажигания автомобиля вынут, все контакты в замке зажигания разомкнуты, и напряжение на систему зажигания не подается. Если ключ вставить в замок зажигания и повернуть его по часовой стрелке на один сектор, контакты в замке зажигания замкнутся и напряжение поступит на обмотку реле зажигания, по обмотке потечет ток, создаст магнитное поле, которое притянет якорь реле.

Контакты реле замкнутся, напряжение питания поступит на низковольтную обмотку катушки зажигания и через нее на коллектор транзистора VT коммутатора. Пока вал двигателя не вращается, на базу транзистора не поступают открывающие импульсы управления, и он закрыт, ток дальше не течет. В применяемых в настоящее время схемах зажигания автомобилей, элементов начерченных синим цветом (диод VD1 и конденсатор С1) нет.

Электрическая схема доработанной системы зажигания

Для пуска двигателя необходимо повернуть ключ в замке зажигания по часовой стрелке еще на один сектор. Стартер начнет вращаться и на коммутатор с датчика вращения поступят управляющие импульсы. Транзистор VT на время 1-2,5 мс откроется и через низковольтную обмотку катушки зажигания пойдет ток. Сердечник катушки начнет намагничиваться, и создаст в высоковольтной обмотке катушки зажигания высокое напряжение. Величина напряжения будет зависеть от соотношения количества витков в катушках.

Для надежной работы двигателя система зажигания должна создавать высокое напряжение с запасом, величиной не менее 25 кВ. Напряжение, при котором происходит пробой (образуется искра) между электродами в свече составляет 14-17 кВ. Таким образом, должен обеспечивается запас по высокому напряжению около 7 кВ, что гарантирует стабильную искру в свечах при любых условиях запуска двигателя.

Величина высокого напряженияв момент запуска двигателя автомобиля

При работе двигателя, за счет работы генератора, напряжение в бортовой сети автомобиля обычно составляет 14,1±0,2 В. На первичную обмотку катушки зажигания, за вычетом падения напряжения (1,2 В) на транзисторе VT, поступают импульсы величиной 14,1 В-1,2 В=12,9 В. В этом режиме величина импульсов на вторичной обмотке катушки зажигания для образования искры в свечах составляет 27 кВ.

В момент пуска двигателя напряжение на выводах заряженного аккумулятора может снижаться до 9,5 В, если аккумулятор заряжен не полностью, то напряжение может быть и меньше. Тогда с учетом падения напряжения на транзисторе VT, величина напряжения на первичной обмотке катушки составит 9,5 В-1,2 В=8,3 В, это на 35% меньше, чем напряжение при работающем двигателе. При этом величина высокого напряжения тоже уменьшится на 35% и составит 17 кВ. Новая свеча создает искру при напряжении 12-17 кВ. Если установлены свечи с напряжением пробоя 17 кВ, то в таком случае искрообразование может быть нестабильным. Расчеты показали, что даже для нового автомобиля с узлами и деталями системы зажигания, находящимися в исправном состоянии, запаса по высокому напряжению может и не быть.

Что же тогда говорить о системе зажигания автомобиля, находящегося в эксплуатации не один год. Происходит старение изоляции свечей и выгорание ее электродов. В высоковольтных проводах и катушке зажигания тоже происходит старение изоляции, что приводит к дополнительным потерям. Несколько лет эксплуатируемый аккумулятор тоже вносит свою лепту. Путь тока от аккумулятора к катушке зажигания проходит по проводам через контакты предохранителя, реле зажигания, соединительные колодки и клеммы. На них тоже происходит падение напряжения.

В дополнение для устойчивого возникновения искры в зазоре свечи при сильно охлажденной воздушно бензиновой смеси требуется подавать на нее более высокое напряжение. Таким образом, запуск двигателя старого автомобиля с первой попытки при больших морозах существующая схема зажигания обеспечить с гарантией не может. Последующие попытки запуска двигателя могут полностью разрядить аккумулятор, с чем большинству автолюбителей доводилось сталкиваться.

Доработка схемы зажигания

С проблемой запуска двигателя в дни с большими морозами я столкнулся давно, когда ездил на автомобиле «Ока». Так как двигатель у «Оки» двух цилиндровый, то запустить его, из-за наличия мертвой точки, гораздо сложнее, чем четырех цилиндровый. Менял датчик холла, коммутатор, катушку зажигания, высоковольтные провода, свечи, но достичь уверенного запуска двигателя в морозы так и не получилось.

Проанализировав электрическую схему зажигания, пришел к выводу, что если подключить электролитический конденсатор к выводу катушки зажигания, на который подается +12 В, то все плохие контакты, через которые подается питающее на катушку напряжение наоборот, буду играть положительную роль, так как будут уменьшать разряд конденсатора. Сначала я установил только конденсатор С1, не хотелось резать провода для впайки диода VD. Пуск двигателя значительно улучшился. После установки диода, который не позволяет разряжаться конденсатору в электропроводку автомобиля при пуске двигателя, «Ока» стала с первого раза, на удивление многим, заводится даже при 25 градусном морозе.

Работает схема следующим образом. Когда вставляется ключ зажигания и поворачивается до первого фиксированного положения, конденсатор С1 через диод VD быстро зарядится от аккумуляторной батареи с учетом падения напряжения на диоде около 1,2 В, до напряжения 11,5 В. При пуске двигателя, на катушку зажигания будет подано не напряжение с аккумулятора величиной 9,5 В, а напряжение с заряженного конденсатора 11,5 В. Таким образом высокое напряжение упадет не на 35%, а всего на 20% и высокое напряжение составит не менее 23 кВ, что вполне достаточно для уверенного возникновения в свечах искры.

Эффективность работы схемы можно еще улучшить, если поставить дополнительно автомобильное реле, подключить его обмотку параллельно реле пуска стартера, а пару нормально замкнутых контактов параллельно диоду. Тогда, когда стартер будет выключен, напряжение с аккумулятора на катушку зажигания будет подаваться, минуя диод. Если в реле стартера есть свободная пара нормально замкнутых контактов, то можно использовать их и не устанавливать дополнительное реле. Замыкание с помощью реле выводов диода еще повысит высокое напряжение на выходе катушки зажигания на несколько киловольт.

Конструкция и детали

Диод VD1 подойдет любого типа, рассчитанный на ток не менее 8 А и обратное напряжение не менее 25 В. Еще лучше применить диод Шоттки, например 90SQ045 (45 В, 9 А). Тогда необходимость в установке дополнительного реле отпадет, так как падение на диоде Шоттки составит всего 0,2 В, что и без установки дополнительного реле увеличит высокое напряжение на несколько киловольт. Такие диоды используют в низковольтном выпрямителе блоков питания компьютеров.

Диод Шоттки в блоке питания

Электролитический конденсатор подойдет любого типа, рассчитанный на напряжение не менее 25 В и емкостью не менее 20000 мкф. Конденсатор должен быть рассчитан на работу в широком диапазоне температур, минус 30-65 градусов Цельсия. Лучше всего подходит конструкция конденсатора с выводами, рассчитанными на винтовое подключение. Я устанавливал конденсатор как на фото.

Электролитический конденсатор

Если нет подходящего по емкости конденсатора, то можно подключить параллельно, соблюдая полярность, несколько конденсаторов меньшей емкости. При параллельном соединении плюсовые выводы конденсаторов соединяются с плюсовыми, а минусовые с минусовыми. Общая емкость тогда составит сумму всех соединенных параллельно конденсаторов.

Например, есть 4 конденсатора емкостью 4700 мкФ, соединив их параллельно, получим конденсатор емкостью 18800 мкФ.

Что касается реле, то можно применить любое автомобильное реле, имеющее нормально замкнутые контакты.

Конденсатор желательно установить в непосредственной близости с катушкой зажигания, но, для предотвращения его перегрева, на максимально возможном удалении от двигателя. Место установки должно не допускать попадания влаги на выводы конденсатора во время движения автомобиля. Предложить готовое решение по размещению диода и конденсатора сложно, так как каждая марка автомобиля имеет оригинальную конструкцию, и место установки деталей приходится выбирать индивидуально.

Аккумулятор UPS

Вместо конденсатора можно применить кислотный аккумулятор небольшой емкости, например от UPS компьютера. Это еще более лучший вариант, чем установка конденсатора. Дополнительный аккумулятор будет при работе двигателя постоянно подзаряжаться и благодаря тому, что система зажигания будет питаться от двух аккумуляторов, дополнительный аккумулятор всегда будет полностью заряжен. При пуске двигателя на систему зажигания будет всегда подаваться напряжение питания более 12 В.

Порядок запуска двигателя автомобиля при морозе

Для безотказного запуска двигателя автомобиль перед наступлением холодов должен быть подготовлен к зимней эксплуатации. Необходимо залить масло в двигатель и коробку передач, предназначенное для работы при низких температурах. Необходимо в обязательном порядке заменить свечи и фильтры, масляный, воздушный и бензиновый. И конечно самое главное это техническое состояние аккумулятора. Даже если аккумулятор новый, его обязательно нужно зарядить от внешнего зарядного устройства. Если все эти требования заблаговременно выполнены, то с пуском двигателя в холодное время года проблем не будет.

Двигатель автомобиля рекомендуется запускать в следующем порядке:

  • Необходимо вставить ключ в замок зажигания, повернуть по часовой стрелке на один сектор и убедиться, что все электроприборы отключены. Хотя они при работе стартера должны отключаться автоматически, но, тем не менее, лучше их отключить, чтобы не создавать дополнительную нагрузку на двигатель в первый момент после его пуска.
  • Для приведения холодного аккумулятора в боевое состояние, его нужно прогреть, включив на 20-30 секунд форы или габаритные огни.
  • Если коробка не автоматическая, то обязательно выжать педаль сцепления до упора. При этом будет отключена от двигателя коробка передач, что существенно снизит нагрузку на стартер. 4. Включить зажигание на пол секунды, чтобы вал двигателя сдвинулся с мертвой точки, и масло смазало трущиеся поверхности двигателя.
  • Повторно включаем зажигание на время не более 3 секунд. Если двигатель не запустился, необходимо выждать до повторного запуска не менее 15 секунд. За это время подогретый еще за счет неудачного пуска двигателя аккумулятор наберется силы. Если за 5-6 попыток с паузами двигатель запустить не удалось и при этом аккумулятор не сел, значит, либо попавшая в механизмы вода замерзла и необходимо отогреть автомобиль, поместив его в теплый гараж. Или возникла неисправность и необходимо обращаться в сервис.
  • Если двигатель автомобиля запустился, то необходимо плавно отпустить педаль сцепления. После прогрева машина готова к поездке.

ydoma.info

Конденсаторные системы зажигания

Конденсаторные системы зажигания работают подобно индукционным системам зажигания, но в них для заряда катушки используется высоковольтный ёмкостный разряд или же катушка отсутствует вообще. Конденсатор похож на аккумулятор тем, что он может хранить заряд, но затем при замыкании цепи конденсатор может отдать заряд практически мгновенно.

В обычных системах конденсаторного зажигания используется трансформатор импульсного постоянного тока для повышения напряжения с 12В до 350 – 400В, которое заряжает конденсатор, который в свою очередь заряжает более мощную катушку зажигания, которая может выдавать напряжение постоянного тока 40 000В на каждый поджиг рабочей смеси (обычно это напряжение гораздо ниже).

С 90-х годов конденсаторные системы зажигания стали доминирующими ввиду более высокой надёжности своих электронных компонентов и их точной синхронизации зажигания. Конденсаторные системы зажигания для двигателей гоночных автомобилей способны давать искру 8 – 12 раз за каждый рабочий такт на холостых оборотах и обычно только одну искру свыше 3 000 об./мин. Это позволяет лучше сжигать топливо и обеспечивает более высокую мощность.

Конденсаторные системы зажигания позволяют двигателям развивать более высокие обороты (до 19 000 об./мин у двигателей гоночных автомобилей), так как период горения искры гораздо короче по сравнению с искрой в индукционных системах зажигания, а время заряда меньше. В случае гоночных автомобилей это может быть преимуществом, однако в случае водяного двигателя такая система может не обеспечить достаточной силы тока и напряжения.

Обычно конденсаторные системы зажигания гоночных автомобилей дают искру 0,1Дж за период 1–2 мсек по сравнению с более длительным и мощным разрядом в индукционной системе зажигания. Это можно исправить простой заменой конденсатора в ёмкостной цепи зажигания. Удачи! Блоки конденсаторного зажигания обычно герметично закрыты. Лучше связаться с производителем и оформить спецзаказ. В противном случае придётся делать такую систему самому.

Обычно в конденсаторных системах зажигания используются «малоомные катушки», что означает применение более толстых проводов в обмотках катушки. Так как разряд конденсатора выше по напряжению и быстрее, то требуется меньшее сопротивление.

Катушка зажигания
Улучшенная схема № 3
  Аккумулятор
Искровой зазор
Распределитель

Вышеприведённая схема представляет собой реализацию конденсаторной системы зажигания, где используется импульсный постоянный ток от инвертора для заряда электролитического конденсатора (C1), который разряжается через тиристор в момент открытия цепи по синхронизации от крышки/ротора распределителя.

Резистор (R1) используется для управления конденсатором. Первый диод (D1) может быть одиночным диодом (с однополупериодным выпрямлением) или представлять собой мостовой выпрямитель. Второй диод (D2) служит для защиты конденсатора от всплесков высокого напряжения и должен иметь достаточный номинал для обеспечения соответствующего блокирующего сопротивления. Третий диод (D3) подобным же образом предотвращает течение ёмкостного разряда обратно к катушке.

Используемые диоды представляют собой обычные высоковольтные диоды, используемые в микроволновых печах или других высоковольтных цепях, например, в телевизорах. Если номинал диодов недостаточно высок для создания блокирующего эффекта, то их можно соединить последовательно.

Чем больше ёмкость конденсатора в этой цепи, тем больше будет разряд, но при этом понадобится более длительное время для перезарядки. В выокооборотистых двигателях может потребоваться батарея конденсаторов для каждого цилиндра или последовательно соединённые менее ёмкие и более быстрые конденсаторы вместо более ёмких больших конденсаторов.

Обычно конденсаторы очень высокого напряжения слишком долго заряжаются для того, чтобы эффективно работать в цепи зажигания двигателя внутреннего сгорания. И, наоборот, обычные маленькие конденсаторы не могут накопить заряд достаточного напряжения для реакции плазменного разряда, но так как они установлены на высокоамперной линии инвертора, то они могут усилить искру. Технически на выходной линии инвертора можно было бы установить серию более маленьких конденсаторов с параллельным или последовательным соединением для получения такого напряжения, которое достаточно для плазменной реакции, и тем самым можно было бы удалить из схемы катушку индуктивности.

Количество джоулей, разряжаемых через конденсатор, зависит от номинальной ёмкости конденсатора (обычно указываемой в микро или пикофарадах или 10E-6/10E-12), поделённой на два квадрата напряжения (J = C/2 * V*V).

Ёмкость и напряжение обычно указываются на самом конденсаторе. Тем не менее, в действительности в обычных электроцепях конденсаторы никогда полностью не разряжаются, поэтому выдаваемая ими мощность немного ниже той, что рассчитывается по указанной выше формуле.



infopedia.su

Тиристорная или конденсаторная система зажигания.

Тиристорная система зажигания



Так как современные автомобильные двигатели стали более высокооборотными и отличаются высокой степенью сжатия, это налагает дополнительные требования на систему зажигания. В настоящее время получили распространения две различные системы зажигания – с накоплением энергии в индуктивности и с накоплением энергии в емкости. Первую из них называют индукторной или транзисторной, а вторую тиристорной или конденсаторной.

В автомобильных двигателях широкое применение нашли системы зажигания с накоплением электромагнитной энергии в магнитном поле катушки, использующие контактные или транзисторные прерыватели, но в некоторых случаях применение конденсаторной системы зажигания дает ощутимое преимущество.

В тиристорных системах зажигания энергия для искрового разряда накапливается в конденсаторе, а в качестве силового реле применяется тиристор. В этих системах катушка зажигания не накапливает энергию, а лишь преобразует ее, увеличивая напряжение во вторичной обмотке и уменьшая, соответственно, величину протекающего по ней тока. Электрическая мощность, равная произведению силы тока на напряжение, остается неизменной за вычетом потерь различного характера.

Тиристор - это полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния:

  • закрытое состояние - состояние низкой проводимости;
  • открытое состояние - состояние высокой проводимости.

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров (трехпереходной структуры) - управление мощной нагрузкой с помощью слабых сигналов, или (для двухпереходной структуры) где открывание тиристора происходит, если разность потенциалов между его выводами превышает напряжение пробоя. Также тиристоры применяются в переключающих устройствах.

Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. По проводимости различают тиристоры, проводящие ток в одном направлении, и тиристоры, проводящие ток в двух направлениях (симисторы, симметричные динисторы). Условно тиристор можно рассматривать как соединение p-n-p транзистора с n-p-n транзистором, причём коллектор каждого из них соединён с базой другого.

Характерной особенностью тиристорных систем зажигания является высокая скорость нарастания вторичного напряжения, поэтому пробой искрового промежутка свечи зажигания надежно обеспечивается даже при загрязненном и покрытом нагаром изоляторе. Кроме того, в тиристорных системах величина вторичного напряжения может быть практически постоянной при изменении частоты вращения коленчатого вала двигателя до максимальной величины, т.к. конденсатор успевает полностью зарядиться на всех режимах работы двигателя.

Однако тиристорные системы зажигания имеют сравнительно малую продолжительность индуктивной составляющей искрового разряда (не более 300 мкс), что приводит к ухудшению воспламеняемости и сгорания рабочей смеси в цилиндрах двигателя на режимах частичных нагрузок. Система зажигания с накоплением энергии в емкости применяются на газовых и высокооборотных мотоциклетных двигателях, для которых не критична продолжительность искрового разряда.

***



Типы тиристорных систем зажигания

В системах зажигания с накоплением энергии в электростатическом поле конденсатора функцию электронного реле выполняют тиристоры, управляемые контактным или бесконтактнымпрерывателем, поэтому такие системы называют контактно-тиристорными или бесконтактно-тиристорными. В основе работы бесконтактных систем лежат те же принципы, что и в бесконтактных системах зажигания с индуктивными накопителями. Различают тиристорные системы зажигания с импульсным и с непрерывным накоплением энергии в электростатическом поле конденсатора. Ниже рассмотрены особенности работы тиристорных систем такого типа.

Система с непрерывным накоплением энергии (рис. 1, а) содержит двухтактный преобразователь напряжения, состоящий из двух транзисторов VT1 и VT2, трансформатора Т1, резисторов R2 и R3 и конденсатора С1. Двухполупериодный выпрямитель с нулевой точкой (диоды VD1 и VD2) служит для выпрямления выходного напряжения преобразователя. Выпрямитель нагружен накопительным конденсатором С2, параллельно которому подключен резистор R4. Тиристор VS прерывает ток в первичной обмотке L1 катушки зажигания (трансформатор Т2). Управление тиристором осуществляется контактным S2 синхронизатором момента зажигания.

При замыкании контактов S1 выключателя зажигания срабатывает двухтактный преобразователь напряжения. На выводах вторичной обмотки L2 трансформатора Т1 появляется переменное напряжение прямоугольной формы с амплитудой 200...500 В. Выпрямленное постоянное напряжение подается на заряд накопительного конденсатора С2, если контакты S2 синхронизатора момента зажигания замкнуты. Тиристор находится в закрытом состоянии, так как его цепь управления шунтирована замкнутыми контактами S2 синхронизатора.

В момент размыкания контактов S2 синхронизатора напряжение от аккумуляторной батареи GB подается через резистор R1 к управляющему электроду тиристора VS. Через открытый тиристор происходит разряд конденсатора С2 на первичную обмотку L1 катушки зажигания Т2, вследствие чего в ее вторичной обмотке L2 индуктируется высокая ЭДС. При соответствующем подборе параметров элементов рассмотренной системы зажигания можно на всех режимах работы двигателя обеспечить полный заряд конденсатора и получить практически не зависящее от частоты вращения коленчатого вала двигателя вторичное напряжение. Цепочка C1—R2 обеспечивает надежный пуск транзисторного преобразователя.

В системе с импульсным накоплением энергии (рис. 1, б) при замыкании контактов S1 выключателя зажигания и размыкания контактов S2 синхронизатора момента зажигания на базу транзистора VT подается положительный импульс напряжения от аккумуляторной батареи GB. Транзистор переходит в состояние насыщения, пропуская через эмиттер-коллекторный переход и первичную обмотку L1 трансформатора ток, создающий магнитное поле в трансформаторе. В момент замыкания контактов S2 синхронизатора цепь базы транзистора замыкается накоротко, транзистор переходит в состояние отсечки, ток в обмотке L1 трансформатора исчезает, а во вторичной обмотке индуктируется высокая ЭДС. В это время замкнутые контакты S2 синхронизатора шунтируют цепь управления тиристором. Тиристор закрыт, а конденсатор С через диод VD1 заряжается до напряжения 200...400 В.

При следующем замыкании контактов S2 синхронизатора к управляющему электроду тиристора через резисторы Rд, Rl, R3 подается напряжение от аккумуляторной батареи. Тиристор открывается. Ток разряда конденсатора проходит через первичную обмотку L1 катушки трансформатора и на выводах вторичной обмотки появляется импульс высокого напряжения, подаваемого на свечу зажигания.

В системах зажигания с накоплением энергии в электростатическом поле конденсатора обеспечивается более высокая скорость нарастания вторичного напряжения, что делает ее менее чувствительной к наличию шунтирующих резисторов и нагару свечей зажигания. Однако вследствие высокой скорости роста вторичного напряжения возрастает напряжение пробоя по сравнению с системами с накоплением энергии в магнитном поле. Кроме того, из-за сокращения длительности индуктивной составляющей искрового разряда ухудшаются воспламенение и сгорание топливовоздушной смеси при пуске двигателя и работе его на режимах частичных нагрузок.

Системы с импульсным накоплением энергии имеют максимальную скорость нарастания высокого напряжения. Но длительность индуктивной составляющей искрового разряда в свечах уменьшена от единиц миллисекунд (в системах с накоплением энергии в индуктивности) до десятков или сотен микросекунд. Это ухудшает воспламенение и сгорание рабочей смеси на средних нагрузках и, следовательно, приводит к повышению расхода топлива и токсичности отработавших газов. Для устранения указанных недостатков надо корректировать устройства опережения зажигания и увеличивать зазор в свечах до 1,2...1,5 мм, что приводит к дальнейшему возрастанию вторичного напряжения и напряженной работе изолирующих частей высоковольтной системы.

***

Контактно-транзисторная система зажигания



k-a-t.ru

Как сгорает конденсатор трамблера: На страже контактов

Когда я не смог завести свою «пятерку», вызванные мастера СТО, «поколдовав» над трамблером, сказали, что необходимо заменить конденсатор, так как проблема в нем. Однако спустя какое-то время мотор заработал. Может ли такое быть?

Контакты можно зачистить пилочкой, в крайнем случае – монетой.

Когда я не смог завести свою «пятерку», вызванные мастера СТО, «поколдовав» над трамблером, сказали, что необходимо заменить конденсатор, так как проблема в нем. Однако спустя какое-то время мотор заработал. Может ли такое быть?

C. Ташаев, Новомосковск

В момент размыкания контактов трамблера катушка зажигания вырабатывает ток высокого напряжения, для которого разомкнутые контакты прерывателя не служат непреодолимым препятствием. Воздушный зазор 0,3 – 0,5 мм легко пробивается, и образующаяся при этом искра приводит к «подгоранию» контактов. Чтобы избежать этого и увеличить энергию искры в свечах зажигания, параллельно контактам прерывателя подключен конденсатор емкостью 0,20 – 0,25 мкФ.

Неисправность конденсатора может возникнуть в трех случаях: вследствие потери части емкости, из-за внутреннего обрыва и как результат внутреннего короткого замыкания. При замыкании двигатель работать не будет, во втором же и первом случаях система зажигания может отказать не сразу. Она будет функционировать, хотя энергия искры будет намного ниже положенной. Об этом свидетельствует неустойчивая работа двигателя на холостом ходу и, возможно, усложненный пуск. Поскольку работа прерывателя в таком случае сопровождается повышенным искрением, его контакты будут ускоренно подгорать и изнашиваться, постепенно ухудшая характеристики двигателя. Таким образом, мотор «откажется» заводиться только через некоторое время после выхода из строя конденсатора. Временно ситуацию можно исправить, если зачистить подгоревшие контакты прерывателя – что и сделали ремонтники.

Следует отметить, что похожие «симптомы» проявляются и при других неисправностях системы зажигания, например, при износе подшипников распределителя, а также неисправности катушки.

Игорь Широкун, Юрий ДацыкФото Андрея Яцуляка

www.autocentre.ua

Универсальное конденсаторно-тиристорное CDI электронное зажигание, оптимизированное по импульсной и пиковой мощности искрового разряда - Зажигание - Двигатели внутреннего сгорания - Каталог статей

Смирнов Владимир Фёдорович

Россия, Тверская обл., г. Кимры

E-mail: [email protected]

Web-sait: smirnov.ucoz.com

При пуске холодного двигателя перед искрообразованием свечи успевают покрыться слоем жидкого диэлектрика — маслянно-бензиновой плёнкой, загрязнённой водой, сажей, молекулами остаточных и атмосферных газов. Чем ниже температура двигателя и выше степень сжатия топливной смеси — толще плёнка.  Выступы электродов свечи, имеющие малые радиусы кривизны, под слоем жидкого диэлектрика перестают влиять на снижение пробивного напряжения. Когда свечи «залило», пробоя не происходит вовсе. Это указывает на превалирующее влияние жидкого диэлектрика.

В момент искрообразования в искровом зазоре свечи катушкой зажигания (КЗ), возбуждается электрическое поле, которое неоднородно. Если его напряжённость вблизи выступов электродов с малым радиусом кривизны превышает пороговый уровень, то с этих выступов возникает самостоятельный электрический разряд, начинающийся тёмным разрядом, переходящим в коронный, ток которого должен сначала пробить плёнку жидкого диэлектрика. Немалую роль при этом играют токопроводящие загрязнения в жидком диэлектрике, создающие повышенные значения токов проводимости. В большинстве теорий [1, с. 83]:«...пробой жидких диэлектриков рассматривается как тепловой процесс, в результате которого в слое жидкого диэлектрика образуются газовые или паровые каналы... При критических значениях напряжённости электрического поля в газовых и паровых каналах начинает развиваться процесс ударной ионизации газа, завершающийся пробоем.». После этого между электродами свечи возникает искровой, затем тлеющий, а если тока достаточно, то и дуговой разряд.

На графике представлена [1, рис. 3.20 ] зависимость времени пробоя жидкого диэлектрика от высокого напряжения. Как видим, при времени воздействия электрического поля более 1 мс напряжение пробоя резко уменьшается. Данное явление, обусловленное ростом числа ионных лавин, послужило стимулом к созданию систем конденсаторного многоискрового AEM зажигания.

По мере прогрева двигателя плёнка из жидкого диэлектрика начинает истончаться и деградировать до полного исчезновения — стандартная модель становится неприменимой. Двигатель переходит в нормальный рабочий режим, при этом [2. c. 121]: «Мощный тепловой толчок, вызывающий ускорение процессов, приводящих к образованию очага сгорания, можно осуществить электрическим разрядом между электродами свечи зажигания при напряжении 8–15 кВ. При высоких температурах в канале или шнуре разряда (Т ≥10000) образуется очаг небольшого объёма. Это означает, что в данном объёме процессы прогрева, распада, ионизации молекул топлива и кислорода и воспламенения происходят столь быстро (через состояное плазмы), что укладываются в период разряда, длительность которого не превышает 10–20 мкс.».Таким образом, в нормальном рабочем режиме достаточна длительность разряда всего 10...20 микросекунд. Очевидно, что энергия разряда должна быть достаточной для создания первоначального очага сгорания, интенсивно инициирующего последующую цепную реакцию процесса воспламенения во всём объёме сжатой топливной смеси.

Схожие данные приводят А. Курченко и А. Синельников [3, с. 60 ]: «Сравнительно малая длительность искрового разряда не является недостатком описываемой системы. Как показали исследования, в исправном и правильно рассчитанном двигателе после достижения нормального теплового режима воспламенение рабочей смеси происходит в течение 10...15 мкс, и искровой разряд длительностью свыше 1 мс, имеющий место в батарейной или транзисторной системах зажигания, бесполезен и вызывает лишь эрозию электродов свечей, сокращая их срок службы. Искра длительностью 1,0 мс и более может оказаться полезной лишь при пуске двигателя на переобогащённой смеси, как горячего, так и холодного.».

Альтернативный путь. В стандартной модели на участке от 1 мс до10 мкс сокращение времени пробоя жидкого диэлектрика можно объяснить тем, что мощность коронного разряда находится в квадратичной зависимости от приложенного напряжения. К началу 90-х у меня возникла новая концепция (от лат. conceptio — понимание, система) конденсаторно-тиристорного зажигания, основанная на следующих постулатах:

  1. Длительный искровой разряд в 1...5 мс полезен только при пуске холодного двигателя, когда на электродах свечей образуется плёнка жидкого диэлектрика. После прогрева двигателя и исчезновения плёнки для воспламенения достаточно первых 10...20 мкс, а оставшийся излишек разряда будет безрезультатно пытаться поджечь уже сгоревшую смесь, да совершать вредоносное действие — разогревать электроды свечей, что на высоких оборотах при высокой мощности разряда может стать причиной калильного зажигания — ограничения числа оборотов.

  2. При 6000 об/мин = 100 об/сек двухтактного двигателя один оборот происходит за 10 мс. Легко посчитать, что искровой разряд в 1 мс будет происходить на протяжении 36°. Это превосходит угол опережения зажигания, например в 29°, занимая ещё 7° фазы быстрого сгорания. Воспламеняющая способность столь длительного искрового разряда оказывается низкой — его энергия распределена во времени, момент воспламенения точно не определён. Зажигание получается вероятностным. Исключить вероятностный фактор можно единственным способом — сконцентрировав энергию искры в разряде длительностью 10... 20 мкс.

  3. В конденсаторно-тиристорном электронном зажигании искрообразование происходит только в первом периоде косинусоиды затухающих колебаний ударного LC-контура (КЗ + разрядный конденсатор) - искровой разряд получается коротким, и конденсатор не успевает полностью разрядиться — возникает недобор мощности от преобразователя напряжения. Данный недостаток легко обратить в преимущество, увеличив напряжение заряда конденсатора. При этом мощность разряда возрастёт в квадратичной зависимости от напряжения, при прежней длительности.

  4. Ёмкость конденсатора следует увеличить, тогда частота затухающих колебаний LC-контура понизится, а длительность разряда — увеличится.

  5. При одинаковой потребляемой мощности альтернативная система зажигания с конденсатором повышенной ёмкости, заряженным до более высокого напряжения и с малой длительностью разряда за счёт использования низкоомной КЗ, а так же и в силу того, что искрообразование происходит лишь в течение первого периода затухающих колебаний, будет способна сконцентрировать искровой разряд.

  6. Неотъемлемой частью новой системы зажигания должно стать устройство зимнего пуска двигателя — когда масло загустело, и стартёр может вызвать проседание напряжения до 6 В.

Основное достоинство конденсаторно-тиристорного CDI зажигания определяется первым законом коммутации, утверждающим, что напряжение на конденсаторе не может измениться скачком. Теоретически конденсатор является источником ЭДС, имеющим нулевое внутреннее сопротивление, и способен создать в момент коммутации ток вплоть до бесконечности при нулевом сопротивлении нагрузки.

Пиковая мощность — наибольшее мгновенное значение мощности разряда. В конденсаторно-тиристорном зажигании наибольшее значение пиковой мощности приходится на самые важные — первые 10...20 мкс начала искрообразования, причём данное достоинство естественным образом следует из его принципа действия. По мере разряда конденсатора мгновенная мощность уменьшается. Пиковая мощность разряда — наиважнейшая для высокооборотных и обычных двигателей характеристика зажигания в нормальном рабочем режиме.

Импульсная мощность (мощность в импульсе) — среднее значение мощности за время длительности импульса. Данная характеристика важна в режиме запуска холодного двигателя для пробоя жидкого диэлектрика.

В момент искрообразования открывается тиристор VS и закорачивает выход преобразователя, останавливая его работу. Заряженный конденсатор С5 подключается к первичной обмотке КЗ, образуя с её индуктивностью LC-контур ударного возбуждения, в котором на частоте резонанса зарядом конденсатора С5 возбуждаются затухающие косинусоидальные колебания. В повышающей обмотке КЗ эти колебания, частотой 2...10 кГц (зависит от КЗ), трансформируются в 100...400 раз большее напряжение, и трамблёром направляются свече того цилиндра, где должно произойти воспламенение сжатой топливно-воздушной смеси.

В свече возникает искровой разряд. Энергия электрического поля конденсатора С5 тратится на воспламенение топливной смеси и преобразуется в энергию магнитного поля КЗ. В момент, когда конденсатор C5 полностью разрядится и напряжение на нём уменьшится до нуля ток в цепи достигнет наибольшего значения. Ввиду полного разряда конденсатора ток в цепи начинает уменьшаться, но не прекращается, так как согласно второму закону коммутации, ЭДС самоиндукции КЗ меняет знак и поддерживает прежнее значение тока. Источником энергии становится энергия магнитного поля КЗ, а конденсатор становится нагрузкой.

Ток, проходя через разряженный конденсатор, начинает его заряжать. Поскольку направление тока осталось прежним, тиристор остаётся открытым, но полярность напряжения на конденсаторе меняется. По мере заряда конденсатора напряжение на нём возрастает, а ток в цепи убывает. Энергия магнитного поля КЗ уменьшается — она расходуется на поддержание искрового разряда и на заряд конденсатора.

Когда ток в цепи станет меньше тока удержания, тиристор выключится. К этому моменту почти вся энергия магнитного поля, за минусом израсходованной на поддержание искрового разряда, запасается в электрическом поле конденсатора, напряжение на нём достигает максимума, но в противоположной полярности.

Снова начинается разряд конденсатора, но направление разрядного тока меняется на противоположное. Теперь цепь LC-контура замыкает динамическое сопротивление открытых диодов VD4...VD7 моста — преобразователь всё ещё не работает. Когда конденсатор разрядится, динамическое сопротивление диодов моста увеличится, цепь LC-контура окончательно разорвётся — искрообразование закончится. Преобразователь запустится на рабочей частоте (18...32 кГц) и полностью зарядит ёмкость С5, после чего потребление тока уменьшится — преобразователь перейдёт в режим холостого хода до следующего искрообразования.

Таким образом, в настоящем зажигании искрообразование происходит на протяжении первого периода колебаний LC-контура, а тиристор открыт только в первую 1/2 данного периода.

О выборе тиристора. В преобразователе, когда тиристор открыт, возникает паразитная ВЧ-генерация. Воздействуя через ёмкость анод-управляющий электрод, она затем мешает тиристору закрыться когда ток в цепи станет меньше удерживающего. Необходим тиристор с наибольшим значением скорости изменения напряжения на аноде в закрытом состоянии. Для Т132-50-9-4 данный показатель — 200 В/мкс (у КУ202Н — всего 5 В/мкс). Чем больше последняя цифра — группа в обозначении — тем лучше. Например, группа 7 — 1000 В/мкс.

В настоящей (альтернативной) системе CDI зажигания низкоомная КЗ имеет меньшую индуктивность первичной обмотки, а значит и меньшее характеристическое (волновое) сопротивление. Вследствие этого основные параметры энергии импульса преобразуются: повышается ток разряда, но сокращается длительность. Чтобы увеличить длительность, ёмкость С5 увеличена до 2 мкФ. Таким образом, заряженный до повышенного напряжения конденсатор С5, ёмкость которого увеличена, разряжается через малое характеристическое сопротивление низкоомной КЗ. В результате формируется искровой разряд повышенной энергии, имеющий оптимальную длительность и высокую импульсную и пиковую мощность. Очевидно, что при этом сохраняются и все другие важные достоинства конденсаторно-тиристорного CDI зажигания: рекордно высокая скорость нарастания высокого напряжения на свече, малая задержка искрообразования (для прогретого двигателя — единицы микросекунд) и крайне малая зависимость пиковой мощности искрового разряда от наличия токов утечки, вызванных проводимостью нагара на свечах, наличием грязи и паразитной ёмкостью высоковольтных проводов и КЗ.

Устройство зимнего пуска двигателя — диод VD1 и конденсатор С1. При пуске холодного двигателя зимой стартёр может вызвать проседание напряжения аккумулятора до 6 В, напряжение на ёмкости С1 становится выше входного, диод VD1 закрывается, и начинается автономное питание устройства зарядом ёмкости С1. Величина ёмкости С1 должна быть десятки тысяч микрофарад, однако практика показала, что вполне достаточно 4700 мкФ.

Транзисторный преобразователь напряжения — модернизированная схема Ройера работает на частоте около 32 кГц и гарантированно успевает зарядить при 6000 об/мин конденсатор C5 ёмкостью 2 мкФ до напряжения около 600 В, потребляя при этом ток не более 2,5 А. На низких оборотах напряжение ещё выше, а ток потребления около 0,7 А. Транзисторам необходимы радиаторы — алюминиевые пластины 80х80х3 мм, которые склеены торцами через изолятор цианоакриловым клеем и размещены в корпусе с отверстиями так, что для охлаждения воздухом открыты все поверхности. Схемотехника преобразователя с одной базовой обмоткой [4, рис. 17.5 ], коммутируемой диодами, выгодно отличается тем, что открытый коммутирующий диод работает как стабистор, предотвращая зенеровский пробой обратносмещённого перехода база-эмиттер закрытого транзистора, что повышает КПД. В схеме реализован нелинейный базовый резистор на лампе накаливания EL. В холодном состоянии сопротивление её нити до десяти раз меньше, чем в горячем. При начальном пуске величина базового тока выше, чем в рабочем режиме, и запуск характеризуется быстрым нарастанием неустойчивости, заканчивающейся автогенерацией прямоугольных колебаний. Лампа накаливания светится в 1/2 накала и является индикатором: работает преобразователь или нет. Зажигание устойчиво работает и на более 7000 об/мин, однако напряжение на конденсаторе начинает cнижаться.

Повышенное напряжение обусловило выбор тиристора классом не менее 9 (900 В). Запуск тиристора осуществляется разрядом ёмкости С2 через негатрон — фототранзистор оптрона U1, работающий в лавинном режиме [5, с. 189-192]. Параметры зарядной цепи R4, VD8 выбраны так, чтобы ограничение заряда ёмкости С2 наступало выше 8000 об/мин. VD8 — стабилизатор напряжения 51 В, а R4 — источник тока. Данная схемотехника позволяет импульсно запускать любые тиристоры, обладает исключительно малой задержкой запуска, хорошей температурной стабильностью, высокой чувствительностью к запуску, оптическим разделением цепей входа и выхода, причём — сверхэкономно.

Универсальность настоящего конденсаторно-тиристорного CDI электронного зажигания — возможность работы как от прерывателя, так и от автомобильного датчика Холла. При размыкании контактов прерывателя времязадающая цепь R3, С4, R6 формирует токовый импульс для светодиода оптрона U1, заряжающий ёмкость С4. При замыкании контактов ёмкость С4 разряжается через сопротивление резистора R6 — формируется защитный временной интервал от «дребезга». У автомобильного датчика Холла токовый импульс имеет отрицательную полярность, поэтому цепь: диод VD9 + светодиод необходимо подключить так, как изображено на схеме перемычками зелёного цвета.

Необязательное тестирование осциллографом. Необходимо изготовить делитель напряжения 1/100 из 2 Вт резистора — 1 МОм и резистора 0,25 Вт — 10 кОм. Вход делителя подключают параллельно тиристору VS, а выход — к открытому входу осциллографа в режиме непрерывной развёртки. Вместо прерывателя подключают простейший самодельный тест-генератор прямоугольных импульсов с регулируемой частотой от единиц до 250-300 Гц, имитирующий прерыватель с помощью транзисторного ключа. Тест-генератору необходим металлический корпус-экран без щелей и короткий экранированный провод — выход. Внутри корпуса — должен быть RC-фильтр питания.

К зажиганию подключить КЗ и свечу. Включаем осциллограф. При выключенном тест-генераторе подаём питание 13, 8 В на зажигание. Смотрим на нить лампы EL, если светится — преобразователь работает. Осциллограф должен показывать напряжение более 600 В. Теперь включаем тест-генератор. В свече должны появиться искровые разряды. Вращая ручку регулятора частоты тест-генератора надо убедиться, что до частоты 200 Гц напряжение на тиристоре (конденсаторе С5) перед искрообразованием имеет вершину на уровне более 600 В. При дальнейшем увеличении частоты длительность вершины будет уменьшаться, затем импульсы станут напоминать пилу — напряжение на ёмкости С5 станет уменьшаться.

Теперь вместо свечи надо создать воздушный разрядный промежуток миллиметров в 10 и проверить на пробой во всём диапазоне частот. Постепенно зазор надо увеличивать до тех пор, пока не прекратится пробой. Так можно узнать длину искрового разряда на воздухе. Хорошую КЗ во время таких испытаний не пробъёт, а плохой — туда и дорога. Запомните производителя и в дальнейшем игнорируйте его КЗ. Длина искрового разряда на воздухе раз в 11 превышает его длину в сжатой топливной смеси, причём чем выше степень сжатия — тем в большее. Таким образом можно оценить максимум зазора в свече, который можно установить.

Ток через тиристор во время искрообразования. Осциллографом измеряем период Т колебаний LC-контура ударного возбуждения. Характеристическое сопротивление LC-контура определяется выражением: ρ = Т/2πС. Величину тока находим с помощью закона Ома: I = U/ρ = U2πC/T, где U = 600 В, С — ёмкость конденсатора С5 = 2мкФ, а 2π = 6,28.

При Т = 100 мкс — ток около 75 А. На частоте искрообразования 200 Гц время открытого состояния тиристора как минимум в 25 раз меньше закрытого, что даёт средний ток всего 3 А. Тиристор Т132-50-9-4 имеет допустимый средний ток в открытом состоянии 50 А, что обеспечивает многократную параметрическую избыточность и надёжность.

Настоящее конденсаторно-тиристорное CDI зажигания — разработка 90-х. Неоднократно оно демонстрировало чудеса — после установки на дымящий автомобиль, не только исчезал дым, но и показатель СО оказывался ниже нормы. Устройство обладает высокой надёжностью, так как каждый из его компонентов используется в комфортной для него области безопасной работы.

Из-за высокого уровня импульсных помех в мировом автопроме сложилось негативное отношение к конденсаторно-тиристорным CDI системам электронного зажигания. Их используют исключительно на гоночных автомобилях или на некоторых лодочных моторах.

Обязательно соблюдайте правила техники электробезопасности, так как в устройстве имеются крайне опасные напряжения!

Литература

  1. Электротехнический справочник. В 3-х т. Т. 1. Общие вопросы. Электротехнические материалы/ Под общ. Ред. Профессоров МЭИ В. Г. Герасимова, П. Г. Грудинского, Л. А. Жукова и др. — 6-е изд., испр. и доп. — М.; Энергия, 1980. — 520 с., ил.

  2. Двигатели внутреннего сгорания: Теория поршневых и комбинированных двигателей. Учебник для втузов по специальности "Двигатели внутреннего сгорания"/ Д. Н. Вырубов, Н. А. Иващенко, В. И. Ивин и др.; Под ред А. С. Орлина, М. Г. Круглова. — 4-е изд., перераб. И доп. — М.: Машиностроение, 1983. — 372 с., ил.

  3. Конденсаторная система зажигания. В помощь радиолюбителю: Сборник. Вып. 90./Сост. Н. Ф. Назаров. — М.: ДОСААФ, 1985.

  4. Горошков Б. И. Радиоэлектронные устройства: Справочник. — М.: Радио и связь, 1984. — 400 с., ил. — (Массовая радиобиблиотека; Вып. 1076).

  5. Дьяконов В.П. Лавинные транзисторы и их применение в импульсных устройствах. Под ред. С. Я. Шаца. М., "Сов. Радио", 1973.

Лучшее чтиво по зажиганиям: http://www.academia-moscow.ru/off-line/_books/fragment_18454.pdf

smirnov.ucoz.com